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Orthogonal Statistical Learning

Motivating Example: Average Treatment Effect

Average Treatment Effect (ATE)

» Data: D € {0, 1} treatment, X € R” features, Y € R outcome.
> ATE: 0, :=E[E[Y | D=1,X] —E[Y | D=0, X]].

» Nuisance: g : X — E[Y | D = k, X] for k € {0, 1}.
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Orthogonal Statistical Learning

Motivating Example: Average Treatment Effect

Average Treatment Effect (ATE)

>

»

»

Data: D € {0, 1} treatment, X € R? features, Y € R outcome.

ATE: 0, :=E[E[Y | D=1,X] —E[Y | D =0, X]].

Nuisance: g, : X — E[Y | D = k, X] for k € {0, 1}.

Challenge: existence of a high (possibly infinite) dimensional nuisance.

Remedy: orthogonal statistical learning and double/debiased machine learning, e.g.,

> Chernozhukov et al. ’18
> Mackey et al. '18
> Foster and Syrgkanis "20
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Orthogonal Statistical Learning

Orthogonal Statistical Learning

Orthogonal statistical learning (OSL)

» Data: D :={Z,...,2Z5,} i.id. sample from P.
Target parameter: € © C R,

Nuisance: g € (G, |-||g)

Loss: ¢, : © x G — Ry.

Risk: L(0,8) :== Ez-p[(z(0, 8)].

» Goal: assuming a true nuisance gy, want to estimate

v

v

v

v

0, := argmin L(0, g).
0cO
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Orthogonal Statistical Learning

Orthogonal Statistical Learning

OSL meta-algorithm
» Sample splitting: D, :={Z;,...,Z,} and D, :== {Zy41, ..., Zon}-
» Nuisance parameter: outputs g based on D,.

» Target parameter: outputs 0 by minimizing

v

Excess risk: 5(6 &) = (9 &) — L(6x, &)-
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Orthogonal Statistical Learning

Localization and Dikin Ellipsoid

Assumption (Localization)

There exists N > 0 such that for alln > N, we have § € Oy, and g € Gg,.

Dikin ellipsoid
» Hessian: H(f, g) := V3L(0,8) and H, := H(0., &)
> Dikin ellipsoid: Oy, := {0 € © : |0 — 0,1, := |HY*(0 — 0,)][|> < r}.

—— Risk contour
* 0,
Dikin ellipsoid
Euclidean ball
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Orthogonal Statistical Learning

Effective Dimension

Effective dimension
» Score: S,(0,g) .= Vol,(0,8) and S(0, g) := E[Sz(0, 8)] = VoL(0, g).
» Covariance: X (0, g) := Cov(Sz(0,g)) and X, := X (0., &)-

» Effective dimension: d, := SUPgeg,, Tr(H*_VZZ(Q*,g) *—1/2)'
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Orthogonal Statistical Learning

Effective Dimension

Effective dimension
» Score: S,(0,8) := Vgl,(0,g) and 5(0, g) := E[Sz(0, 8)] = VoL(, g).
» Covariance: X (0, g) := Cov(Sz(0,g)) and X, := X (0., &)-
> Effective dimension: d, := sup,g, Tr(H*_VZZ(G*,g)H*_VZ).
> Well-specified model—d, = d.

> Mis-specified model—problem-specific characterization of the complexity of ©.
> E.g., Huber ’67, Ostrovskii and Bach ’21.
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Orthogonal Statistical Learning

Main Result

Theorem (Informal)

Under suitable assumptions, the OSL estimator 0 has excess risk, with probability at least 1 — 6,

R

a , d, DA
.00 % % [i1og (1/0) % + 212 - gl

!

whenever n 2> max{N, (K + o7,)d*}.
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Main Result

Theorem (Informal)

Under suitable assumptions, the OSL estimator 0 has excess risk, with probability at least 1 — 6,

N R

.00 % % [i1og (1/0) % + 212 - gl

v

whenever n 2> max{N, (K + o7,)d*}.

Foster and Syrgkanis (2020) obtained the rate, with \, := infg Amin(H(0, &)),

dd d. .
o X n )\?Hg—gOHQ :

Liu et al. (UW)



Orthogonal Statistical Learning

Main Result

Theorem (Simplified)
Under , the OSL estimator 0 has excess risk, with probability at least 1 — 4,

A 1d, | 1
< — T g — gt
£0.8) 50 (1% + Il
whenever n > max{N, (K} + o7,)d*}.

Foster and Syrgkanis (2020) obtained the rate, with A\, := infg Amin(H(0, &)),

dd d,.. .,
o )Ti;‘f')\?”g—go”g :

Liu et al. (UW) 7/10




Orthogonal Statistical Learning

Main Result

Table: In their simplified version, our bound scales as O(d,/n) and Foster and Syrgkanis’s bound
scales as O(d’/n) where d’' := d*/\,. We compare them in different regimes of eigendecays.

Eigendecay Ratio
PN H, d'/d.
Poly-Poly i~ i 8  dlatDAB+2)
Poly-Exp  i™® eV d'"NB-a)
Exp-Poly e #  iF dh+?
de’d if p=v

Exp-Exp e # e e if p>v
d?etd if p < v
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Orthogonal Statistical Learning

Proof Sketch

By Taylor’s theorem,

~

E(0,8) = L(8, 80) — L(s: ) = S(6x:80) " (6 — 6.) + 110 — 0.7, 5.,1/2 S 10— 0.7,

9_7g0
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Orthogonal Statistical Learning

Proof Sketch

By Taylor’s theorem,
E(0,8) = L(. &) — L(6x. 80) = S0, 80) (B — 0.) + 110 — 0.115,5 ) /2 S 10— 0.1]7,-
By Taylor’s theorem again,

LoD, 2) = Lo(0us &) = 51(6,2) (0 — 0.) + 110 — 012, 5 5)/2
[V + 18— gli3] 10— 0ullm. + 18 - 0.l

It follows that

A A d, N
£0,8) <110 — 0.7, S W + 18 — &ll¢-
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Orthogonal Statistical Learning

Proof Sketch

By Taylor’s theorem,
£(0.8) == L0, ) — L(0,g0) = (0, g0) (0 0.) + 10— 0,112 5, /2. 10— 0.1
By Taylor’s theorem again,
Lo(0, 8) = La(0s: 8) = Sa(04:8) " (0 = 0.) + 110 = 0,113, 5 )/
—|Va/n+ 18— gll3] 10— 0ullm. + 18— 0.

Missing steps
» Control S,(6y, g) for every g € Gg,.
> Relate H,(0, g) to H(0, g) and then to H(0,, &) for every (0, g) € ©p, X Gg,.
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Orthogonal Statistical Learning

Assumptions

Step 1: Relate S,(0,, g) to S(bs, g) and then to S(0., g&) = 0.
» Sub-Gaussian score.

» Neyman orthogonal score.
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Assumptions

Step 1: Relate S,(0,, g) to S(bs, g) and then to S(0., g&) = 0.
» Sub-Gaussian score.

» Neyman orthogonal score.

Step 2: Relate H,(0, g) to H(6, g) and then to H(6., g).

» Matrix Bernstein.

» Pseudo self-concordance.

Theorem (Informal)

Under assumptions above, with probability at least 1 — 9,

R
£0,8) 5 °

K2

d, .
{Kf log (1/0)— + B3118 — goll‘é]

whenever n > max{N, (K7 + o7,)d*}.
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Orthogonal Statistical Learning

Summary

v

Novel non-asymptotic bound for the OSL estimator.

v

Assume pseudo self-concordance rather than strong convexity.

The bound depends on the effective dimension instead of d.

v

v

It improves previous work at least by a factor of d.
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