Orthogonal Statistical Learning with Self-Concordant Loss

Lang Liu, Carlos Cinelli, Zaid Harchaoui

University of Washington

Team

Lang Liu

Carlos Cinelli

Zaid Harchaoui

Motivating Example: Average Treatment Effect

Average Treatment Effect (ATE)

- ▶ **Data**: $D \in \{0, 1\}$ treatment, $X \in \mathbb{R}^p$ features, $Y \in \mathbb{R}$ outcome.
- ► ATE: $\theta_0 := \mathbb{E}\left[\mathbb{E}[Y \mid D = 1, X] \mathbb{E}[Y \mid D = 0, X]\right]$.
- ▶ Nuisance: $g_{0,k}: X \mapsto \mathbb{E}[Y \mid D = k, X]$ for $k \in \{0, 1\}$.

Liu et al. (UW) 1 / 10

Motivating Example: Average Treatment Effect

Average Treatment Effect (ATE)

- ▶ **Data**: $D \in \{0, 1\}$ treatment, $X \in \mathbb{R}^p$ features, $Y \in \mathbb{R}$ outcome.
- ► ATE: $\theta_0 := \mathbb{E} \left[\mathbb{E}[Y \mid D = 1, X] \mathbb{E}[Y \mid D = 0, X] \right]$.
- ▶ Nuisance: $g_{0,k}: X \mapsto \mathbb{E}[Y \mid D = k, X]$ for $k \in \{0, 1\}$.
- Challenge: existence of a high (possibly infinite) dimensional nuisance.
- ► **Remedy**: orthogonal statistical learning and double/debiased machine learning, e.g.,
 - ▷ Chernozhukov et al. '18

Liu et al. (UW) 1 / 10

Orthogonal Statistical Learning

Orthogonal statistical learning (OSL)

- ▶ **Data**: $\mathcal{D} := \{Z_1, \dots, Z_{2n}\}$ i.i.d. sample from \mathbb{P} .
- ▶ Target parameter: $\theta \in \Theta \subset \mathbb{R}^d$.
- ▶ Nuisance: $g \in (\mathcal{G}, \|\cdot\|_{\mathcal{G}})$
- ▶ Loss: $\ell_z : \Theta \times \mathcal{G} \to \mathbb{R}_+$.
- ▶ Risk: $L(\theta, g) := \mathbb{E}_{Z \sim \mathbb{P}}[\ell_Z(\theta, g)].$
- ▶ **Goal**: assuming a true nuisance g_0 , want to estimate

$$\theta_{\star} := \operatorname*{arg\;min}_{\theta \in \Theta} \mathit{L}(\theta, g_0).$$

Liu et al. (UW) 2 / 10

Orthogonal Statistical Learning

OSL meta-algorithm

- ▶ Sample splitting: $\mathcal{D}_1 := \{Z_1, \dots, Z_n\}$ and $\mathcal{D}_2 := \{Z_{n+1}, \dots, Z_{2n}\}$.
- ▶ Nuisance parameter: outputs \hat{g} based on \mathcal{D}_2 .
- ► Target parameter: outputs $\hat{\theta}$ by minimizing

$$\min_{\theta \in \Theta} L_n(\theta, \hat{g}) := \frac{1}{n} \sum_{i=1}^n \ell_{Z_i}(\theta, \hat{g}).$$

► Excess risk: $\mathcal{E}(\hat{\theta}, g_0) := L(\hat{\theta}, g_0) - L(\theta_{\star}, g_0)$.

Liu et al. (UW) 3 / 10

Localization and Dikin Ellipsoid

Assumption (Localization)

There exists N > 0 such that for all n > N, we have $\hat{\theta} \in \Theta_{\theta_*}$ and $\hat{g} \in \mathcal{G}_{g_0}$.

Dikin ellipsoid

- ▶ Hessian: $H(\theta, g) := \nabla_{\theta}^2 L(\theta, g)$ and $H_{\star} := H(\theta_{\star}, g_0)$.
- ▶ Dikin ellipsoid: $\Theta_{\theta_{\star},r} := \{\theta \in \Theta : \|\theta \theta_{\star}\|_{H_{\star}} := \|H_{\star}^{1/2}(\theta \theta_{\star})\|_{2} < r\}.$

Liu et al. (UW) 4 / 10

Effective Dimension

Effective dimension

- ▶ Score: $S_z(\theta, g) := \nabla_{\theta} \ell_z(\theta, g)$ and $S(\theta, g) := \mathbb{E}[S_Z(\theta, g)] = \nabla_{\theta} L(\theta, g)$.
- ▶ Covariance: $\Sigma(\theta, g) := \text{Cov}(S_Z(\theta, g))$ and $\Sigma_{\star} := \Sigma(\theta_{\star}, g_0)$.
- ► Effective dimension: $d_{\star} := \sup_{g \in \mathcal{G}_{g_0}} \operatorname{Tr}(H_{\star}^{-1/2} \Sigma(\theta_{\star}, g) H_{\star}^{-1/2}).$

Liu et al. (UW) 5 / 10

Effective Dimension

Effective dimension

- ► Score: $S_z(\theta, g) := \nabla_{\theta} \ell_z(\theta, g)$ and $S(\theta, g) := \mathbb{E}[S_Z(\theta, g)] = \nabla_{\theta} L(\theta, g)$.
- ▶ Covariance: $\Sigma(\theta, g) := \text{Cov}(S_Z(\theta, g))$ and $\Sigma_{\star} := \Sigma(\theta_{\star}, g_0)$.
- ► Effective dimension: $d_\star := \sup_{g \in \mathcal{G}_{g_0}} \operatorname{Tr}(H_\star^{-1/2} \Sigma(\theta_\star, g) H_\star^{-1/2}).$
 - \triangleright Well-specified model $-d_{\star}=d$.
 - \triangleright Mis-specified model—problem-specific characterization of the complexity of Θ .
 - ▷ E.g., Huber '67, Ostrovskii and Bach '21.

Liu et al. (UW) 5 / 10

Theorem (Informal)

Under suitable assumptions, the OSL estimator $\hat{\theta}$ has excess risk, with probability at least $1 - \delta$,

$$\mathcal{E}(\hat{\theta}, g_0) \lesssim \frac{e^R}{\kappa^2} \left[K_1^2 \log (1/\delta) \frac{d_{\star}}{n} + \beta_2^2 \|\hat{g} - g_0\|_{\mathcal{G}}^4 \right]$$

whenever $n \gtrsim \max\{N, (K_2^2 + \sigma_H^2)d^2\}$.

Liu et al. (UW) 6 / 10

Theorem (Informal)

Under suitable assumptions, the OSL estimator $\hat{\theta}$ has excess risk, with probability at least $1 - \delta$,

$$\mathcal{E}(\hat{\theta}, g_0) \lesssim \frac{e^R}{\kappa^2} \left[K_1^2 \log (1/\delta) \frac{d_{\star}}{n} + \beta_2^2 \|\hat{g} - g_0\|_{\mathcal{G}}^4 \right]$$

whenever $n \gtrsim \max\{N, (K_2^2 + \sigma_H^2)d^2\}$.

Remark

Foster and Syrgkanis (2020) obtained the rate, with $\lambda_{\star} := \inf_{\theta} \lambda_{\min}(H(\theta, g_0))$,

$$O\left(\frac{\frac{d}{\lambda_{\star}^2}\frac{d}{n}+\frac{d}{\lambda_{\star}^2}\|\hat{g}-g_0\|_{\mathcal{G}}^4\right).$$

Liu et al. (UW) 6 / 10

Theorem (Simplified)

Under suitable assumptions, the OSL estimator $\hat{\theta}$ has excess risk, with probability at least $1 - \delta$,

$$\mathcal{E}(\hat{\theta}, g_0) \lesssim O\left(\frac{1}{\lambda_{\star}} \frac{d_{\star}}{n} + \frac{1}{\lambda_{\star}} \|\hat{g} - g_0\|_{\mathcal{G}}^4\right)$$

whenever $n \gtrsim \max\{N, (K_2^2 + \sigma_H^2)d^2\}$.

Remark

Foster and Syrgkanis (2020) obtained the rate, with $\lambda_{\star} := \inf_{\theta} \lambda_{\min}(H(\theta, g_0))$,

$$O\left(\frac{\frac{d}{\lambda_{\star}^2}\frac{d}{n}+\frac{d}{\lambda_{\star}^2}\|\hat{g}-g_0\|_{\mathcal{G}}^4\right).$$

Liu et al. (UW) 7 / 10

Table: In their simplified version, our bound scales as $O(d_{\star}/n)$ and Foster and Syrgkanis's bound scales as O(d'/n) where $d' := d^2/\lambda_{\star}$. We compare them in different regimes of eigendecays.

	Eigendecay		Ratio
	Σ_{\star}	H_{\star}	d'/d_{\star}
Poly-Poly	$i^{-\alpha}$	i^{-eta}	$d^{(\alpha+1)\wedge(\beta+2)}$
Poly-Exp	$i^{-\alpha}$	$e^{- u i}$	$d^{1\wedge(3-lpha)}$
Exp-Poly	$e^{-\mu i}$	i^{-eta}	d^{eta+2}
			$de^{ u d}$ if $\mu= u$
Exp-Exp	$e^{-\mu i}$	$e^{- u i}$	$d^2e^{ u d}$ if $\mu> u$
			$d^2 e^{\mu d}$ if $\mu < u$

Liu et al. (UW) 7 / 10

Proof Sketch

By Taylor's theorem,

$$\mathcal{E}(\hat{\theta}, g_0) = L(\hat{\theta}, g_0) - L(\theta_{\star}, g_0) = S(\theta_{\star}, g_0)^{\top} (\hat{\theta} - \theta_{\star}) + \|\hat{\theta} - \theta_{\star}\|_{H(\bar{\theta}, g_0)}^2 / 2 \lesssim \|\hat{\theta} - \theta_{\star}\|_{H_{\star}}^2.$$

Liu et al. (UW)

Proof Sketch

By Taylor's theorem,

$$\mathcal{E}(\hat{\theta}, g_0) = L(\hat{\theta}, g_0) - L(\theta_{\star}, g_0) = S(\theta_{\star}, g_0)^{\top} (\hat{\theta} - \theta_{\star}) + \|\hat{\theta} - \theta_{\star}\|_{H(\bar{\theta}, g_0)}^2 / 2 \lesssim \|\hat{\theta} - \theta_{\star}\|_{H_{\star}}^2.$$

By Taylor's theorem again,

$$L_{n}(\hat{\theta}, \hat{g}) - L_{n}(\theta_{\star}, \hat{g}) = S_{n}(\theta_{\star}, \hat{g})^{\top} (\hat{\theta} - \theta_{\star}) + \|\hat{\theta} - \theta_{\star}\|_{H_{n}(\bar{\theta}', \hat{g})}^{2} / 2$$

$$\gtrsim - \left[\sqrt{d_{\star}/n} + \|\hat{g} - g_{0}\|_{\mathcal{G}}^{2} \right] \|\hat{\theta} - \theta_{\star}\|_{H_{\star}} + \|\hat{\theta} - \theta_{\star}\|_{H_{\star}}^{2}.$$

It follows that

$$\mathcal{E}(\hat{\theta}, g_0) \lesssim \|\hat{\theta} - \theta_{\star}\|_{H_{\star}}^2 \lesssim \frac{d_{\star}}{n} + \|\hat{g} - g_0\|_{\mathcal{G}}^4.$$

Liu et al. (UW) 8 / 10

Proof Sketch

By Taylor's theorem,

$$\mathcal{E}(\hat{\theta}, g_0) := L(\hat{\theta}, g_0) - L(\theta_{\star}, g_0) = S(\theta_{\star}, g_0)^{\top} (\hat{\theta} - \theta_{\star}) + \|\hat{\theta} - \theta_{\star}\|_{H(\bar{\theta}, g_0)}^2 / 2 \lesssim \|\hat{\theta} - \theta_{\star}\|_{H_{\star}}^2.$$

By Taylor's theorem again,

$$L_{n}(\hat{\theta}, \hat{g}) - L_{n}(\theta_{\star}, \hat{g}) = S_{n}(\theta_{\star}, \hat{g})^{\top} (\hat{\theta} - \theta_{\star}) + \|\hat{\theta} - \theta_{\star}\|_{H_{n}(\bar{\theta}', \hat{g})}^{2} / 2$$

$$\gtrsim - \left[\sqrt{d_{\star}/n} + \|\hat{g} - g_{0}\|_{\mathcal{G}}^{2} \right] \|\hat{\theta} - \theta_{\star}\|_{H_{\star}} + \|\hat{\theta} - \theta_{\star}\|_{H_{\star}}^{2}.$$

Missing steps

- ▶ Control $S_n(\theta_{\star}, g)$ for every $g \in \mathcal{G}_{g_0}$.
- ▶ Relate $H_n(\theta, g)$ to $H(\theta, g)$ and then to $H(\theta_{\star}, g_0)$ for every $(\theta, g) \in \Theta_{\theta_{\star}} \times \mathcal{G}_{g_0}$.

Liu et al. (UW) 8 / 10

Assumptions

Step 1: Relate $S_n(\theta_{\star}, g)$ to $S(\theta_{\star}, g)$ and then to $S(\theta_{\star}, g_0) = 0$.

- ► Sub-Gaussian score.
- ► Neyman orthogonal score.

Liu et al. (UW) 9 / 10

Assumptions

Step 1: Relate $S_n(\theta_{\star}, g)$ to $S(\theta_{\star}, g)$ and then to $S(\theta_{\star}, g_0) = 0$.

- ► Sub-Gaussian score.
- ► Neyman orthogonal score.

Step 2: Relate $H_n(\theta, g)$ to $H(\theta, g)$ and then to $H(\theta_*, g_0)$.

- ► Matrix Bernstein.
- Pseudo self-concordance.

Liu et al. (UW) 9 / 10

Assumptions

Step 1: Relate $S_n(\theta_{\star}, g)$ to $S(\theta_{\star}, g)$ and then to $S(\theta_{\star}, g_0) = 0$.

- ► Sub-Gaussian score.
- ► Neyman orthogonal score.

Step 2: Relate $H_n(\theta, g)$ to $H(\theta, g)$ and then to $H(\theta_{\star}, g_0)$.

- ► Matrix Bernstein.
- ► Pseudo self-concordance.

Theorem (Informal)

Under assumptions above, with probability at least $1 - \delta$ *,*

$$\mathcal{E}(\hat{\theta}, g_0) \lesssim \frac{e^R}{\kappa^2} \left[K_1^2 \log \left(1/\delta \right) \frac{d_{\star}}{n} + \beta_2^2 \|\hat{g} - g_0\|_{\mathcal{G}}^4 \right]$$

whenever $n \gtrsim \max\{N, (K_2^2 + \sigma_H^2)d^2\}$.

Liu et al. (UW) 9 / 10

Summary

- ► Novel non-asymptotic bound for the OSL estimator.
- Assume pseudo self-concordance rather than strong convexity.
- ▶ The bound depends on the effective dimension instead of *d*.
- \blacktriangleright It improves previous work at least by a factor of d.

Paper

Liu et al. (UW)