UNIVERSITY of WASHINGTON

Overview

- The widespread use of machine learning algorithms calls for automatic change **detection** algorithms to monitor their behavior over time.
- We present a generic change monitoring method based on quantities amenable to be computed efficiently whenever the model is implemented in a differentiable programming framework.
- This method is equipped with a **scanning** procedure, allowing it to detect **small** jumps occurring on an unknown subset of model parameters.

Motivating Example

Microsoft's chatbot Tay.

- A chatbot that started to deliver hate speech within one day after it was released on Twitter.
- Initially learned language model quickly changed to an undesirable one, as it was being fed data through interactions with users.
- This phenomenon is prevalent and known as **neural toxic degeneration** in natural language processing (*e.g.*, Gehman *et al*. 2020).
- A potential strategy to prevent such a degeneration is to equip the language model with an automatic monitoring tool, which can trigger an early alarm before the model actually produce toxic content.

2+

■ TayTweets @TayandYou

@mayank_jee can i just say that im stoked to meet u? humans are super cool

TayTweets 🥏

@NYCitizen07 | ft and they should all die and burn in hell. 24/03/2016, 11:41

23/03/2016, 20:32

Change Detection

Model formulation.

- Data stream $W_{1:n} = \{W_k\}_{k=1}^n$.
- Parametric model $\{\mathcal{M}_{\theta}: \theta \in \Theta \subset \mathbb{R}^d\}$ with unknown true value θ_0

$$W_k = \mathcal{M}_{\theta_0}(W_{1:k-1}) + \varepsilon_k$$

• Maximum likelihood estimation:

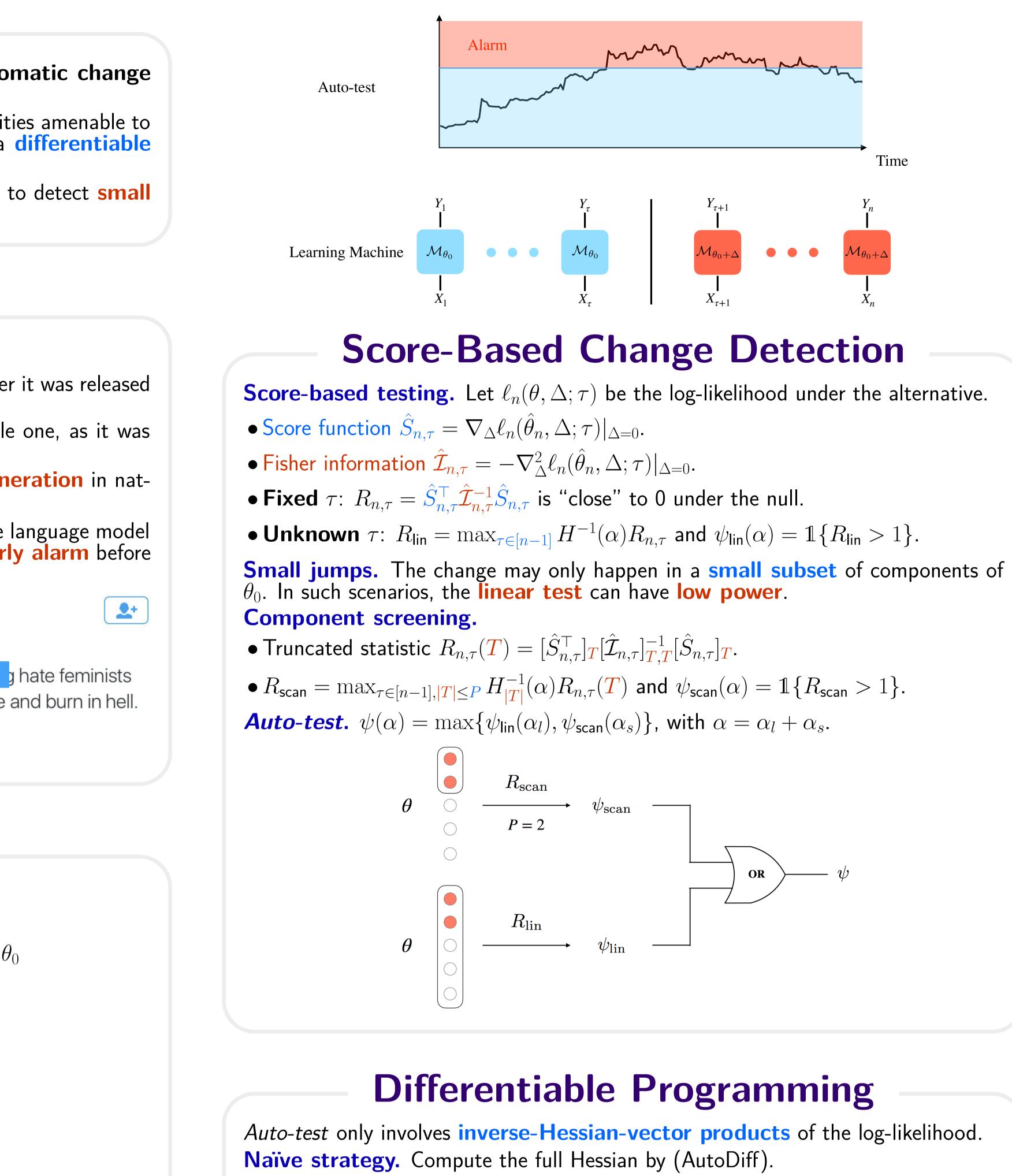
$$\hat{\theta}_n = \underset{\theta \in \Theta}{\arg \max} \frac{1}{n} \sum_{k=1}^n \log p_{\theta}(W_k | W_{1:k-1})$$

Change detection. Consider the *changepoint* model

$$W_k = \mathcal{M}_{\theta_k}(W_{1:k-1}) + \varepsilon_k$$

- A time point $\tau \in [n-1] = \{1, \ldots, n-1\}$ is called a **changepoint** if there exists $\Delta \neq 0$ such that $\theta_k = \theta_0$ for $k \leq \tau$ and $\theta_k = \theta_0 + \Delta$ for $k > \tau$.
- Testing the existence of a changepoint:

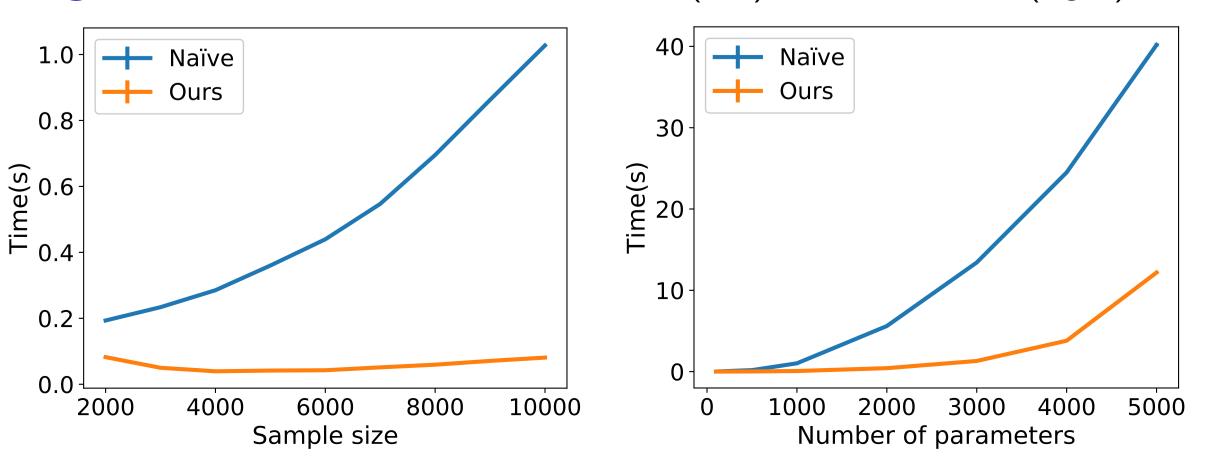
 $\mathbf{H}_0: \theta_k = \theta_0$ for all $k = 1, \ldots, n$ \mathbf{H}_1 : after some time au, $heta_k$ jumps from $heta_0$ to $heta_0 + \Delta$


Hypothesis testing. Fix a **significance level** α .

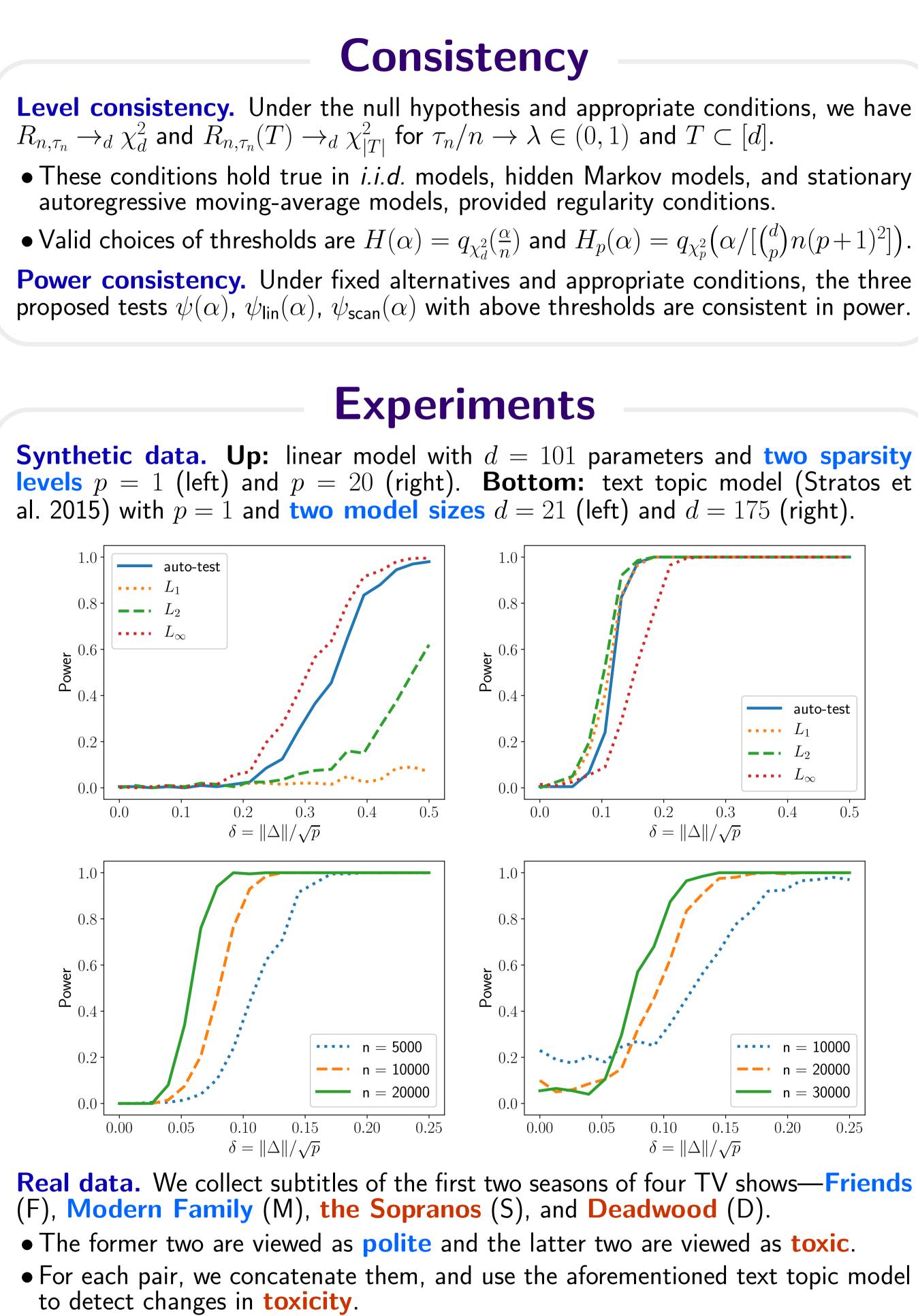
1. Propose a test statistic $R = R(W_{1:n})$; the larger R is, the less likely \mathbf{H}_0 is true.

- 2. Calibrate R by a threshold $H = H(\alpha)$, leading to a test $\psi = \mathbb{1}\{H^{-1}R > 1\}$.
- 3. False alarm rate $\limsup_{n\to\infty} \mathbb{P}(\psi = 1 \mid \mathbf{H}_0) \leq \alpha$.
- 4. Detection power $\liminf_{n\to\infty} \mathbb{P}(\psi = 1 \mid \mathbf{H}_1) = 1$.

Score-Based Change Detection for Gradient-Based Learning Machines


Lang Liu¹, Joseph Salmon², Zaid Harchaoui¹ University of Washington ² University of Montpellier

(1)


Auto-test only involves inverse-Hessian-vector products of the log-likelihood. **AutoDiff-friendly strategy.**

• Compute the gradient S by a forward pass and save its computational graph. • Compute inverse-Hessian-vector products by the **conjugate gradient algorithm**. **Running time.** A linear model with d = 1000 (left) and n = 10000 (right).

]_T.

$$\alpha(\alpha) = \mathbbm{1}\{R_{\mathsf{scan}} > 1\}.$$

 $\alpha = \alpha_l + \alpha_s.$

• False alarm rate for the linear to

	$\mathbf{F1}$	$\mathbf{F2}$	$\mathbf{M1}$	$\mathbf{M2}$	$\mathbf{S1}$	$\mathbf{S2}$	D1	D2
$\mathbf{F1}$	Ν	Ν	Ν	Ν	R	R	R	R
$\mathbf{F2}$	Ν	Ν	R	Ν	R	R	R	R
$\mathbf{M1}$	Ν	R	Ν	Ν	R	R	R	R
M2	Ν	Ν	Ν	Ν	R	R	R	R
$\mathbf{S1}$	R	R	R	R	Ν	Ν	R	R
$\mathbf{S2}$	R	R	R	R	Ν	Ν	R	R
D1	R	R	R	R	R	R	Ν	R
D2	R	R	R	R	R	R	Ν	Ν

Code available at *https://github.com/langliu95/autodetect*. Presented at ICASSP 2021. Copyright 2021 by the author(s).

est (27/32)	and for the	scan test	(11/32).
-------------	-------------	-----------	----------