Score-Based Change Detection for Gradient-Based Learning Machines

Lang Liu¹ Joseph Salmon² Zaid Harchaoui¹

Department of Statistics, University of Washington, Seattle ² IMAG, Univ. Montpellier, CNRS, Montpellier

April 21, 2021

Motivating example

Microsoft's chatbot Tay.

- Delivered hate speech within one day after its release.
- Initial language model quickly changed to an undesirable one.
- Neural toxic degeneration in NLP (e.g., Gehman et al. 2020).

Potential solution: equip the language model with an automatic monitoring tool, which can trigger an early alarm before the model produce toxic content.

Score-based change detection

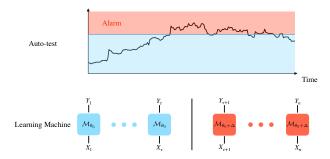
Model: $(X_k, Y_k) \sim \mathcal{M}_{\theta_k}$ with $\theta_k \in \mathbb{R}^d$ for k = 1, ..., n.

Testing the existence of a changepoint:

 $\mathbf{H}_0: \theta_k = \theta_0$ for all $k \longleftrightarrow \mathbf{H}_1:$ after time τ, θ_k jumps from θ_0 to $\theta_0 + \Delta$.

Test statistic: $R = R(\{(X_i, Y_k)\}_{k=1}^n)$.

Test/decision rule: $\psi = \mathbf{1}\{R > 1\}$.

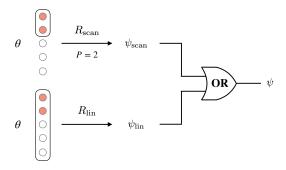


Score-based change detection

Linear test ψ_{lin} : look at all model parameters.

Scan test ψ_{scan} : adapted to small jumps via component screening

Auto-test $\psi := \max\{\psi_{\text{lin}}, \psi_{\text{scan}}\}.$



Implementation¹

Key step: inverse-Hessian-vector product of the log-likelihood function.

Naïve strategy: compute the full Hessian by AutoDiff.

AutoDiff-friendly strategy

- Compute the gradient and save its computational graph.
- Conjugate gradient algorithm.

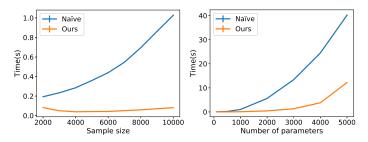


Figure: Running time for inverse-Hessian-vector product. Left: d = 1000; Right: n = 10000.

Synthetic data

Models: linear model and text topic model.

Parameters: pre-change θ_0 ; post-change θ_1 ; differ in p components.

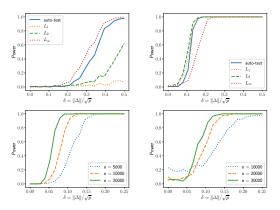


Figure: Power versus magnitude of change. Up: linear model with d = 101, p = 1 (left) and p = 20 (right); Bottom: text topic model with p = 1, (N, M) = (3, 6) (left) and (N, M) = (7, 20) (right).

Real data

Detecting shifts in language toxicity

- Collect subtitles of four TV shows—Friends ("polite"), Modern Family ("polite"), the Sopranos ("toxic"), Deadwood ("toxic").
- Concatenate each pair and detect shifts in toxicity.

Linear test: false alarm rate 27/32; detection power 1.0.

Scan test: false alarm rate 11/32; detection power 1.0.

	F1	F2	M1	M2	S1	S2	D1	D2
F1	N	N	N	N	R	R	R	R
F2	Ν	Ν	R	N	R	R	R	R
M1	Ν	R	N	N	R	R	R	R
M2	Ν	Ν	N	N	R	R	R	R
S1	R	R	R	R	Ν	Ν	R	R
S2	R	R	R	R	Ν	Ν	R	R
D1	R	R	R	R	R	R	Ν	R
D2	R	R	R	R	R	R	Ν	N