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Motivating example

Microsoft’s chatbot Tay.
o Delivered hate speech within one day after its release.
e Initial language model quickly changed to an undesirable one.
e Neural toxic degeneration in NLP (e.g., Gehman et al. 2020).

Potential solution: equip the language model with an automatic monitoring
tool, which can trigger an early alarm before the model produce toxic content.
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Score-based change detection

Model: (X, Yi) ~ My, with 6, € R for k =1,...,n.
Testing the existence of a changepoint:

Ho : Ok = 0o for all k +— Hj : after time 7,0k jumps from 6y to Go + A.

Test statistic: R = R({(Xi, Y«)}i=1)-
Test/decision rule: ¢ = 1{R > 1}.
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Score-based change detection

Linear test vii,: look at all model parameters.

Scan test tscan: adapted to small jumps via component screening
Auto-test 1) := max{iin, ¥scan }-
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Implementation!

Key step: inverse-Hessian-vector product of the log-likelihood function.
Naive strategy: compute the full Hessian by AutoDiff.
AutoDiff-friendly strategy

o Compute the gradient and save its computational graph.
e Conjugate gradient algorithm.
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Figure: Running time for inverse-Hessian-vector product. Left: d = 1000; Right: n = 10000.

LCode available at: https://github.com/langliu95/autodetect.



Synthetic data

Models: linear model and text topic model.

Parameters: pre-change 0p; post-change 0;; differ in p components.
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Figure: Power versus magnitude of change. Up: linear model with d = 101, p = 1 (left) and p = 20 (right);
Bottom: text topic model with p = 1, (N, M) = (3, 6) (left) and (N, M) = (7, 20) (right).



Real data

Detecting shifts in language toxicity

o Collect subtitles of four TV shows—Friends (“polite” ), Modern Family
(“polite”), the Sopranos ( “toxic”), Deadwood ( “toxic”).

e Concatenate each pair and detect shifts in toxicity.
Linear test: false alarm rate 27/32; detection power 1.0.

Scan test: false alarm rate 11/32; detection power 1.0.
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