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ABSTRACT
The widespread use of machine learning algorithms calls for
automatic change detection algorithms to monitor their be-
havior over time. As a machine learning algorithm learns
from a continuous, possibly evolving, stream of data, it is
desirable and often critical to supplement it with a compan-
ion change detection algorithm to facilitate its monitoring and
control. We present a generic score-based change detection
method that can detect a change in any number of compo-
nents of a machine learning model trained via empirical risk
minimization. This proposed statistical hypothesis test can be
readily implemented for such models designed within a dif-
ferentiable programming framework. We establish the con-
sistency of the hypothesis test and show how to calibrate it to
achieve a prescribed false alarm rate. We illustrate the versa-
tility of the approach on synthetic and real data.

Index Terms— Change detection, differentiable pro-
gramming, system monitoring.

1. INTRODUCTION

Statistical machine learning models are fostering progress
in numerous technological applications, e.g., visual object
recognition and language processing, as well as in many
scientific domains, e.g., genomics and neuroscience. This
progress has been fueled recently by statistical machine learn-
ing libraries designed within a differentiable programming
framework such as PyTorch [1] and TensorFlow [2].

Gradient-based optimization algorithms such as accel-
erated batch gradient methods are then well adapted to this
framework, opening up the possibility of gradient-based train-
ing of machine learning models from a continuous stream of
data. As a learning system learns from a continuous, possibly
evolving, data stream, it is desirable to supplement it with
tools facilitating its monitoring in order to prevent the learned
model from experiencing abnormal changes.

Recent remarkable failures of intelligent learning systems
such as Microsoft’s chatbot [3] and Uber’s self-driving car
[4] show the importance of such tools. In the former case, the
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initially learned language model quickly changed to an unde-
sirable one, as it was being fed data through interactions with
users. The addition of an automatic monitoring tool can po-
tentially prevent a debacle by triggering an early alarm, draw-
ing the attention of its designers and engineers to an abnormal
change of a language model.

To keep up with modern learning machines, the monitor-
ing of machine learning models should be automatic and ef-
fortless in the same way that the training of these models is
now automatic and effortless. Humans monitoring machines
should have at hand automatic monitoring tools to scrutinize
a learned model as it evolves over time. Recent research in
this area is relatively limited.

We introduce a generic change monitoring method called
auto-test based on statistical decision theory. This approach is
aligned with machine learning libraries developed in a differ-
entiable programming framework, allowing us to seamlessly
apply it to a large class of models implemented in such frame-
works. Moreover, this method is equipped with a scanning
procedure, enabling it to detect small jumps occurring on an
unknown subset of model parameters. The proofs and more
details can be found in [5]. The code is publicly available at
github.com/langliu95/autodetect.

Previous work on change detection. Change detection
is a classical topic in statistics and signal processing; see [6, 7]
for a survey. It has been considered either in the offline set-
ting, where we test the null hypothesis with a prescribed false
alarm rate, or in the online setting, where we detect a change
as quickly as possible. Depending on the type of change, the
change detection problem can be classified into two main cat-
egories: change in the model parameters [8, 9] and change
in the distribution of data streams [10, 11, 12]. We focus on
testing the presence of a change in the model parameters.

Test statistics for detecting changes in model parameters
are usually designed on a case-by-case basis; see [6, 13, 14,
15, 16] and references therein. These methods are usually
based on (possibly generalized) likelihood ratios or on resid-
uals and therefore not amenable to differentiable program-
ming. Furthermore, these methods are limited to large jumps,
i.e., changes occurring simultaneously on all model parame-
ters, in contrast to ours.
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Fig. 1: Illustration of monitoring a learning machine.

2. SCORE-BASED CHANGE DETECTION

Let W1:n := {Wk}nk=1 be a sequence of observations. Con-
sider a family of machine learning models {Mθ : θ ∈ Θ ⊂
Rd} such that Wk =Mθ(W1:k−1) + εk, where {εk}nk=1 are
independent and identically distributed (i.i.d.) random noises.
To learn this model from data, we choose a loss function L
and estimate model parameters by solving the problem:

θ̂n := arg min
θ∈Θ

1

n

n∑
k=1

L
(
Wk,Mθ(W1:k−1)

)
.

This encompasses constrained empirical risk minimization
(ERM) and constrained maximum likelihood estimation
(MLE). For simplicity, we assume the model is correctly
specified, i.e., there exists a true value θ0 ∈ Θ from which the
data are generated.

Under abnormal circumstances, this true value may not
remain the same for all observations. Hence, we allow a po-
tential parameter change in the model, that is, θ = θk may
evolve over time:

Wk =Mθk(W1:k−1) + εk .

A time point τ ∈ [n−1] := {1, . . . , n−1} is called a change-
point if there exists ∆ 6= 0 such that θk = θ0 for k ≤ τ and
θk = θ0 + ∆ for k > τ . We say that there is a jump (or
change) in the data sequence if such a changepoint exists. We
aim to determine if there exists a jump in this sequence, which
we formalize as a hypothesis testing problem.

(P0) Testing the presence of a jump

H0 : θk = θ0 for all k = 1, . . . , n

H1 : after some time τ , θk jumps from θ0 to θ0 + ∆.

We focus on models whose loss L(Wk,Mθ(W1:k−1))
can be written as − log pθ(Wk|W1:k−1) for some conditional
probability density pθ. For instance, the squared loss function
is associated with the negative log-likelihood of a Gaussian
density; for more examples, see, e.g., [17]. In the remainder
of the paper, we will work with this probabilistic formulation
for convenience, and we refer to the corresponding loss as the
probabilistic loss.

Algorithm 1 Auto-test

1: Input: data (Wi)
n
i=1, log-likelihood `, levels αl and αs,

and maximum cardinality P .
2: for τ = 1 to n− 1 do
3: Compute Rn(τ) in (1) using AutoDiff.
4: Compute Rn(τ, P ;α) in (3).
5: end for
6: Output: ψauto(α) = max{ψlin(αl), ψscan(αs)} in (4).

Remark. Discriminative models can also fit into this frame-
work. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. observations, then
the loss function reads L(Yk,Mθ(Xk)). If, in addition, L is a
probabilistic loss, then the associated conditional probability
density is pθ(Yk|Xk).

2.1. Likelihood score and score-based testing.

Let 1{·} be the indicator function. Given τ ∈ [n − 1] and
1 ≤ s ≤ t ≤ n, we define the conditional log-likelihood
under the alternative as

`s:t(θ,∆; τ) :=

t∑
k=s

log pθ+∆1{k>τ}(Wk|W1:k−1) .

We will write `s:t(θ,∆) for short if there is no confusion.
Under the null, we denote by `s:t(θ) := `s:t(θ, 0;n) the con-
ditional log-likelihood. The score function w.r.t. θ is defined
as Ss:t(θ) := ∇θ`s:t(θ), and the observed Fisher information
w.r.t. θ is denoted by Is:t(θ) := −∇2

θ`s:t(θ).
Given a hypothesis testing problem, the first step is to pro-

pose a test statistic Rn such that the larger Rn is, the less
likely the null hypothesis is true. Then, for a prescribed sig-
nificance level α ∈ (0, 1), we calibrate this test statistic by a
threshold r0 := r0(α), leading to a test 1{Rn > r0}, i.e., we
reject the null if Rn > r0. The threshold is chosen such that
the false alarm rate or type I error rate is asymptotically con-
trolled by α, i.e., lim supn→∞ P(Rn > r0 | H0) ≤ α. We
say that such a test is consistent in level. Moreover, we want
the detection power, i.e., the conditional probability of reject-
ing the null given that it is false, to converge to 1 as n goes to
infinity. And we say such a test is consistent in power.

Let us follow this procedure to design a test for Problem
(P0). We start with the case when the changepoint τ is fixed.
A standard choice is the generalized score statistic given by

Rn(τ) := S>τ+1:n(θ̂n)In(θ̂n; τ)−1Sτ+1:n(θ̂n) , (1)

where In(θ̂n; τ) is the partial observed information w.r.t. ∆
[18, Chapter 2.9] defined as

Iτ+1:n(θ̂n)− Iτ+1:n(θ̂n)>I1:n(θ̂n)−1Iτ+1:n(θ̂n). (2)

To adapt to an unknown changepoint τ , a natural statistic
is Rlin := maxτ∈[n−1]Rn(τ). And, given a significance level
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Fig. 2: Power curves for a linear model with d = 101 (left:
p = 1; right: p = 20). The sample size is n = 1000.

α, the decision rule reads ψlin(α) := 1{Rlin > Hlin(α)},
where Hlin(α) is a prescribed threshold discussed in Sec. 3.
We call Rlin the linear statistic and ψlin the linear test.

2.2. Sparse alternatives

There are cases when the jump only happens in a small subset
of components of θ0. The linear test, which is built assuming
the jump is large, may fail to detect such small jumps. There-
fore, we also consider sparse alternatives.

(P1) Testing the presence of a small jump:

H0 : θk = θ0 for all k = 1, . . . , n

H1 : after some time τ , θk jumps from θ0 to θ0 + ∆,
where ∆ has at most P nonzero entries.

Here P is referred to as the maximum cardinality, which is set
to be much smaller than d, the dimension of θ. We denote by
T the changed components, i.e., ∆T 6= 0 and ∆[d]\T = 0.

Given a fixed T , we consider the truncated statistic

Rn(τ, T ) = S>τ+1:n(θ̂n)T
[
In(θ̂n; τ)T,T

]−1
Sτ+1:n(θ̂n)T .

Let Tp be the collection of all subsets of size p of [d]. To adapt
to unknown T , we use

Rn(τ, P ;α) := max
p∈[P ]

max
T∈Tp

Hp(α)−1Rn(τ, T ) , (3)

where we use a different threshold Hp(α) for each p ∈ [P ].
Finally, since τ is also unknown, we propose Rscan(α) :=
maxτ∈[n−1]Rn(τ, P ;α), with decision rule ψscan(α) :=
1{Rscan(α) > 1}. We call Rscan(α) the scan statistic and
ψscan the scan test.

To combine the respective strengths of these two tests, we
consider the test

ψauto(α) := max{ψlin(αl), ψscan(αs)} , (4)

with αl + αs = α, and we refer to it as the auto-test. The
choice of αl and αs should be based on prior knowledge re-
garding how likely the jump is small. We illustrate how to
monitor a learning machine with auto-test in Fig. 1.
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Fig. 3: Power curves of the auto-test for a text topic model
with p = 1 (left: (N,M) = (3, 6); right: (N,M) = (7, 20)).

2.3. Differentiable programming

An attractive feature of auto-test is that it can be computed
by inverse-Hessian-vector products. That opens up the pos-
sibility to implement it easily using a machine learning li-
brary designed within a differentiable programming frame-
work. Indeed, the inverse-Hessian-vector product can then be
efficiently computed via automatic differentiation. The algo-
rithm to compute the auto-test is presented in Alg. 1.

3. LEVEL AND POWER

We summarize the asymptotic behavior of the proposed
score-based statistics under null and alternatives.

Proposition (Null hypothesis). Under the null hypothesis
and certain conditions, we have, for any subset T ⊂ [d] and
τn ∈ N such that τn/n→ λ ∈ (0, 1),

Rn(τn)→d χ
2
d and Rn(τn, T )→d χ

2
|T |,

where we denote by →d the convergence in distribution.
In particular, with thresholds Hlin(α) = qχ2

d
(α/n) and

Hp(α) = qχ2
p

(
α/[
(
d
p

)
n(p + 1)2]

)
, the tests ψlin(α), ψscan(α)

and ψauto(α) are consistent in level, where qD(α) is the upper
α-quantile of the distribution D.

Most conditions in the above Proposition are standard. In
fact, under suitable regularity conditions, they hold true for
i.i.d. models, hidden Markov models [19, Chapter 12], and
stationary autoregressive moving-average models [20, Chap-
ter 13].

The next proposition verifies the consistency in power of
the proposed tests under fixed alternatives.

Proposition (Fixed alternative hypothesis). Assume the ob-
servations are independent, and the alternative hypothesis is
true with a fixed change parameter ∆. Let the changepoint
τn be such that τn/n → λ ∈ (0, 1). Under certain condi-
tions, the tests ψlin(α), ψscan(α) and ψauto(α) are consistent
in power.



4. EXPERIMENTS

We apply our approach to detect changes on synthetic data
and on real data. We summarize the settings and our findings.

Synthetic data. For each model, we generate the first
half sample from the pre-change parameter θ0 and generate
the second half from the post-change parameter θ1, where θ1

is obtained by adding δ to the first p components of θ0. Next,
we run the proposed auto-test to monitor the learning process,
where the significance levels are set to be α = 2αl = 2αs =
0.05 and the maximum cardinality P = b

√
dc. We repeat

this procedure 200 times and approximate the detection power
by rejection frequency. Finally, we plot the power curves by
varying δ. Note that the value at δ = 0 is the empirical false
alarm rate.

Additive model. We consider a linear model with 101
parameters and investigate two sparsity levels, p = 1 and
p = 20. We compare the auto-test with three baselines given
by theLa norm of the score function for a ∈ {1, 2,∞}, where
these baselines are calibrated by the empirical quantiles of
their limiting distributions. Note that the linear test corre-
sponds to the L2 norm with a proper normalization. And the
scan test with P = 1 corresponds to the L∞ norm. As shown
in Fig. 2, when the change is sparse, i.e., a small jump, the
auto-test and L∞ test have similar power curves and outper-
form the rest of the tests significantly. When the change is
less sparse, i.e., a large jump, all tests’ performance gets im-
proved, with the L∞ test being less powerful than the other
three. This empirically illustrates that (1) the L∞ test work
better in detecting sparse changes, (2) the L1 test and the
L2 test are more powerful for non-sparse changes and (3) the
auto-test achieves comparable performance in both situations.

The proposed auto-test is calibrated by its large sample
properties and the Bonferroni correction. This strategy tends
to result in tests that are too conservative, with empirical false
alarm rates largely below 0.05. We also use resampling-based
strategy to calibrate the auto-test, i.e., generating bootstrap
samples and calibrating the test using the quantiles of the test
statistics evaluated on bootstrap samples. The empirical false
alarm rates are around 0.065 for both p = 1 and p = 20.

Text topic model. We consider a text topic model [21]
and investigate the auto-test for different sample sizes. This
model is a hidden Markov model whose emission distribution
has a special structure. We examine two parameter schemes:
(N,M) ∈ {(3, 6), (7, 20)}, where N is the number of hid-
den states and M is the number of categories of the emission
distribution, and p is set to be 1. As demonstrated in Fig. 3,
for the first scheme, all tests have small false alarm rates, and
their power rises as the sample size increases. For the second
scheme, the false alarm rate is out of control in the beginning,
but this problem is alleviated as the sample size increases.
This empirically verifies that the auto-test is consistent in both
level and power even for dependent data.

Real data. We collect subtitles of the first two seasons of

Table 1: Decision of the scan test on the TV-show applica-
tion: each (row, column) pair stands for a concatenation; “R”
means reject and “N” means not reject. Red entries are false
alarms.

F1 F2 M1 M2 S1 S2 D1 D2

F1 N N N N R R R R
F2 N N R N R R R R
M1 N R N N R R R R
M2 N N N N R R R R
S1 R R R R N N R R
S2 R R R R N N R R
D1 R R R R R R N R
D2 R R R R R R N N

four TV shows—Friends (F), Modern Family (M), the Sopra-
nos (S) and Deadwood (D)—where the former two are viewed
as “polite” and the latter two as “rude”. For every pair of sea-
sons, we concatenate them, and train the text topic model with
N = b

√
n/100c and M being the size of vocabulary built

from the training corpus. The task is to detect changes in the
rudeness level. As an analogy, the text topic model here cor-
responds to a chatbot, and subtitles are viewed as interactions
with users. We want to know whether the conversation gets
rude as the chatbot learns from the data.

The linear test, i.e., the auto-test with αl = α and αs = 0,
does a perfect job in reporting shifts in rudeness level. How-
ever, it has a high false alarm rate (27/32). This is expected
since the linear test may capture the difference in other as-
pects, e.g., topics of the conversation. The scan test, i.e., the
auto-test with αl = 0 and αs = α, has much lower false
alarm rate (11/32). Moreover, as shown in Table 1, there are
only two false alarms in the most interesting case, where the
sequence starts with a polite show. We note that this problem
is hard, since rudeness is not the only factor that contributes
to the difference between two shows. The results are promis-
ing since we benefit from exploiting the sparsity even without
knowing which model components are related to the rudeness
level.

5. CONCLUSION

We introduced a change monitoring method called auto-test
that is well suited to machine learning models implemented
within a differentiable programming framework. The exten-
sion of this approach to penalized maximum likelihood or
regularized empirical risk estimation in a high dimensional
setting is an interesting venue for future work.
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