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Abstract

We introduce an entropy-regularized statistic that defines a divergence between
probability distributions. The statistic is the transport cost of a coupling which
admits an expression as a weighted average of Monge couplings with respect to a
Gibbs measure. This coupling is related to the static Schrödinger bridge given a
finite number of particles. We establish the asymptotic consistency of the statistic
as the sample size goes to infinity and show that the population limit is the solution
of Föllmer’s entropy-regularized optimal transport. The proof technique relies on a
chaos decomposition for paired samples. We illustrate the interest of the approach
on the two-sample homogeneity testing problem.

1 Introduction

In 1932, Schrödinger [23] considered the following lazy gas experiment; see, e.g., [5] for a review.
Image n indistinguishable particles in Rd moving independently as Brownian motion at temperature
ε. At time t = 0, we observe that the empirical distribution of their initial locations approximately
equals some density ρ0. At time t = 1, we observe that the empirical distribution of their terminal
locations approximately equals another density ρ1, which differs significantly from what it should be
by the law of large numbers, i.e.,

ρ1(y) 6=
∫

1

(2π)d/2
exp

(
−‖x− y‖

2

2ε

)
ρ0(x)dx.

It is clear that this situation is unlikely to happen. Schrödinger then inquires for, among all unlikely
ways in which this could happen, the most likely path for each particle. As Föllmer shows in [9],
the paths are determined by first solving for the (static) Schrödinger bridge (which is introduced in
Section 2) and then connecting the two end points by a Brownian bridge with diffusion ε.

Although Schrödinger’s lazy gas experiment is typically defined in the dynamic setting for Brownian
motion, its static counterpart, Schrödinger bridges [9, 15], can be defined more generally. In
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continuum, the Schrödinger bridge can be made precise as the solution to the entropy-regularized
optimal transport (EOT) between two densities ρ0 and ρ1 [16], where the entropy is given by the
negative differential entropy. Recently, Schrödinger bridges have been used in score-based generative
modeling [4] and Markov chain Monte Carlo [1].

In its entropy-regularized form, the Schrödinger bridge problem is closely related to the EOT between
two discrete distributions [7, 8], where the entropy is given by the negative Shannon entropy. This
discrete EOT is particularly attractive both from a computational viewpoint [7] and from a statistical
viewpoint [20]. When we only have access to i.i.d. samples from ρ0 and ρ1, one may use the solution
to the discrete EOT between the empirical distributions to estimate the Schrödinger bridge. However,
it remains largely unclear if this estimation is consistent. Existing works either focus on the case
when both ρ0 and ρ1 are discrete [3, 13] or is limited to the regularized cost rather than the solution
[10, 17].

In this work, we introduce the so-called discrete Schrödinger bridge which recovers Schrödinger’s
original discrete set-up as the Schrödinger bridge connecting two empirical distributions. We show
that it is the solution to a modified discrete EOT problem. We prove its convergence towards the
Schrödinger bridge in continuum. Finally, we design a novel Schrödinger bridge statistic and apply it
to two-sample homogeneity testing on synthetic and real data.

2 Background

Schrödinger bridges in continuum. Let ν0 and ν1 be two probability measures on Rd. Given
ε ∈ R+ and a cost function c : Rd × Rd → R+, we assume that the following Markov transition
kernel density is well-defined:

pε(x, y) =
1

Zε(x)
exp

[
−1

ε
c(x, y)

]
,

where Zε(x) is the normalizing constant. For instance, when c is the quadratic cost, this is the transi-
tion density of Brownian motion with diffusion ε considered in Schrödinger’s lazy gas experiment.
Suppose that (W0,W1) is distributed according to this Markov transition kernel. Informally, the
Schrödinger bridge connecting ν0 and ν1 at temperature ε is the joint law of (W0,W1) conditioned
to have W0 ∼ ν0 and W1 ∼ ν1. In continuum, when ν0 = ρ0 and ν1 = ρ1 are densities, it can be
made precise as the solution to the EOT problem:

min
ν∈Π(ρ0,ρ1)

[∫
c(x, y)dν(x, y) + εH(ν)

]
, (1)

where Π(ρ0, ρ1) is the set of joint distributions (couplings) with marginals ρ0 and ρ1, and H(ν) is the
entropy of ν defined as H(ν) =

∫
ν(x, y) log ν(x, y)dxdy if ν is a density and infinity otherwise.

Characterization of Schrödinger bridges. Since the entropy H is strongly convex, the EOT
problem has a unique solution µε. Even though µε is usually not explicit, it admits the following ex-
pression due to [6, 22]. There exists two measurable functions aε and bε, to be called the Schrödinger
potentials, such that, for ξ(x, y) = exp

{
− 1
ε [c(x, y)− aε(x)− bε(y)]

}
,

µε(x, y) = ξ(x, y)ρ0(x)ρ1(y). (2)

Note that µε ∈ Π(ρ0, ρ1). This implies∫
ξ(x, y)ρ0(x)dx

a.s.
=

∫
ξ(x, y)ρ1(y)dy

a.s.
= 1. (3)

3 Discrete Schrödinger bridges

Let {Xi}ni=1 and {Yi}ni=1 be two independent i.i.d. samples from densities ρ0 and ρ1, respectively.
Let Sn be the set of permutations on [n] := {1, . . . , n}. Every permutation σ = (σ1, . . . , σn) can
be viewed as a matching between these two sets of random variables, and it induces a coupling
1
n

∑n
i=1 δ(Xi,Yσi ) with marginals given by the two empirical distributions ρ̂n0 := 1

n

∑n
i=1 δXi and
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ρ̂n1 := 1
n

∑n
i=1 δYi . Its associated cost is then c(X,Yσ) :=

∑n
i=1 c(Xi, Yσi). If we weigh each per-

mutation σ by the (random) weight w(σ) := exp(− 1
ε c(X,Yσ)), then we obtain a Gibbs probability

distribution on Sn, i.e., q∗ε (σ) := w(σ)/
∑
τ∈Sn w(τ). Now we mix all permutations by defining

µ̂nε :=
∑
σ∈Sn

q∗ε (σ)
1

n

n∑
i=1

δ(Xi,Yσi ). (4)

Interpretation as discrete Schrödinger bridges. It can be shown that µ̂nε recovers Schrödinger’s
original discrete set-up as the Schrödinger bridge connecting ρ̂n0 and ρ̂n1 at temperature ε. To see
this, consider a realization Xi = xi and Yi = yi for i ∈ [n]. Then ρ̂n0 and ρ̂n1 are (nonrandom)
discrete distributions supported on n categories. Imagine n independent particles {W i}ni=1, starting
from positions W i

0 = xi, i ∈ [n], make jumps according to the Markov transition kernel pε(xi, ·),
respectively. Let Ln(1) := 1

n

∑n
i=1 δW i

1
be the empirical distribution of their terminal locations and

Ln(0, 1) := 1
n

∑n
i=1 δ(W i

0 ,W
i
1) be the joint empirical distribution at two time points. It can be shown

[18] that the law of Ln(0, 1) given Ln(1) = ρ̂n1 is exactly given by µ̂nε (with Xi = xi and Yi = yi,
i ∈ [n]). In other words, for each matching σ ∈ Sn,

P

(
Ln(0, 1) =

1

n

n∑
i=1

δ(xi,yσi )

∣∣∣ Ln(1) =
1

n

n∑
i=1

δyi

)
= q∗ε (σ). (5)

We will refer to µ̂nε the discrete Schrödinger bridge.

Connection to discrete entropy-regularized optimal transport. The discrete EOT problem is a
discrete counterpart of the EOT problem in continuum. To be more specific, it reads

min
ν∈Π(ρ̂n0 ,ρ̂

n
1 )

 n∑
i=1

n∑
j=1

c(Xi, Yj)ν(Xi, Yj) + εEnt(ν)

 , (6)

where Ent(ν) =
∑n
i=1

∑n
j=1 ν(Xi, Yj) log ν(Xi, Yj). The solution to (4) is a smoothed version

of the optimal Monge coupling between ρ̂n0 and ρ̂n1 . In the same spirit, the discrete Schrödinger
bridge can be viewed as another smoothed version of the optimal Monge coupling. Recall that µ̂nε
is a convex combination of all Monge couplings with weights {exp(− 1

ε c(X,Yσ))}σ∈Sn . That is, a
permutation gets exponentially small weight if its associated cost is relatively large. In fact, µ̂nε is the
solution to a modified EOT problem.

Lemma 1. Let P(Sn) be the set of probabilities on Sn. Then we have

q∗ε = arg min
q∈P(Sn)

 n∑
i=1

n∑
j=1

c(Xi, Yj)νq(Xi, Yj) +
ε

n
Ent(q)

 , (7)

where νq :=
∑
σ∈Sn q(σ) 1

n

∑n
i=1 δ(Xi,Yσi ). In particular, µ̂nε = νq∗ε .

Proof. For any probability q on SN , consider the relative entropy H(q | q∗ε ) of q with respect to q∗ε .

H(q | q∗ε ) =
∑
σ∈Sn

q(σ) log
q(σ)

q∗ε (σ)
=
∑
σ∈Sn

q(σ) log

(
q(σ)

∑
τ∈SN w(τ)

w(σ)

)

= Ent(q) + log

[∑
τ∈Sn

w(τ)

] ∑
σ∈Sn

q(σ) +
1

ε

∑
σ∈Sn

c(X,Yσ)q(σ)

=
n

ε

n∑
i=1

n∑
j=1

c(Xi, Yj)νq(Xi, Yj) + Ent(q) + log
∑
τ∈Sn

w(τ).

Hence, (7) is equivalent to minimizing H(q | q∗ε ), which is uniquely minimized at q = q∗ε .
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Schrödinger bridge statistic. Since µ̂nε is a smoothed version of the optimal Monge coupling, its
cost of transport

Tn :=

∫
c(x, y)dµ̂nε (x, y) =

∑
σ∈Sn

q∗ε (σ)
1

n

n∑
i=1

c(Xi, Yσi), (8)

can be used to measure the difference between ρ̂n0 and ρ̂n1 . In particular, it can be used as a statistic to
test for homogeneity between two samples. We will discuss it in detail in Section 5.

4 Asymptotic properties

In this section, we summarize asymptotic properties of the discrete Schrödinger bridge µ̂nε and
the Schrödinger bridge statistic Tn. Due to the length constraint, we give the exact statements in
Appendix and will present the full proofs in a different venue.

The next theorem shows that µ̂nε is a consistent estimator of the Schrödinger bridge in continuum µε.
Theorem 1 (Consistency). Under appropriate assumptions, as n→∞, Tn converges in probability
to θ :=

∫
cdµε. In particular, µ̂nε converges weakly to µε, in probability.

Proof sketch. We use a change of measure argument. Firstly, we show that, under the measure µnε (i.e.,
(Xi, Yi)

i.i.d.∼ µε), Tn can be rewritten as the conditional expectation of c(X1, Y1) given the σ-algebra
generated by the pair of random measures (ρ̂n0 , ρ̂

n
1 ). Concretely, Tn = µnε [c(X1, Y1) | σ(ρ̂n0 , ρ̂

n
1 )].

Secondly, under the measure µnε , Tn →a.s. µ
n
ε [Tn] = θ by the reverse martingale convergence

theorem. Thirdly, we prove a contiguity result in the sense of Le Cam [24, Chapter 6] and transfer
the convergence result to the desired one under the measure (ρ0 ⊗ ρ1)n from which our data are
generated. Finally, repeating the above argument for each continuous bounded function η yields∫
ηdµ̂nε →p

∫
ηdµε. The weak convergence then follows.

The Schrödinger bridge statistic Tn is a rather complicated function of the two empirical distributions
ρ̂n0 and ρ̂n1 . Our next result shows that it can be well approximated by linear functions of the two
distributions. Given a probability measure ν and p ≥ 1, we define Lp(ν) the space of functions that
have finite p-th moment under ν and Lp0(ν) be the subset of Lp(ν) whose expectation under ν is zero.
Theorem 2 (First order chaos decomposition). Under appropriate assumptions. There exists two
functions f ∈ L2

0(ρ0) and g ∈ L2
0(ρ1) such that

Tn − θ =
1

n

n∑
i=1

[f(Xi) + g(Yi)] + op(n
−1/2). (9)

In particular, as n→∞,
√
n(Tn − θ)→d N (0, ς2) where ς2 := ρ0[f2] + ρ1[g2].

Proof sketch. Thanks to the contiguity result in Theorem 1, it suffices to prove (9) under the measure
µnε . Recall from (2) that µε(x, y) = ξ(x, y)ρ0(x)ρ1(y).

Step 1. Find functions f ∈ L2
0(ρ0) and g ∈ L2

0(ρ1) such that

µnε [n(Tn − θ) | Xi] = µnε

[
n∑
k=1

[f(Xk) + g(Yk)]
∣∣∣ Xi

]
= f(Xi) + µε[g(Yi) | Xi]

µnε [n(Tn − θ) | Yi] = µnε

[
n∑
k=1

[f(Xk) + g(Yk)]
∣∣∣ Yi] = µε[f(Xi) | Yi] + g(Yi)

(10)

for all i ∈ [n]. By symmetry and exchangeability, we obtain

κ1,0(x) := µnε [n(Tn − θ) | Xi](x) =

∫
[c(x, y)− θ]ξ(x, y)ρ1(y)dy

κ0,1(y) := µnε [n(Tn − θ) | Yi](y) =

∫
[c(x, y)− θ]ξ(x, y)ρ0(x)dx.
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Algorithm 1 Gibbs sampling for discrete Schrödinger bridges
1: Input: samples {Xi}ni=1 and {Yi}ni=1, functions c and ξ, burn-in B and number of iterations L.
2: Initialization: σ(0) ← id.
3: for t = 1, . . . , L do
4: Randomly generate i 6= j ∈ [n].
5: Compute r ← ξ

(
Xi, Yσ(t−1)

j

)
ξ
(
Xj , Yσ(t−1)

i

)
/ξ
(
Xi, Yσ(t−1)

i

)
ξ
(
Xj , Yσ(t−1)

j

)
.

6: Generate a ∼ Bern(r).
7: if a = 1 then
8: Obtain σ(t) from σ(t−1) by swapping the entries σ(t−1)

i and σ(t−1)
j .

9: else
10: Set σ(t) ← σ(t−1).
11: end if
12: end for
13: Output: T ← 1

L−B
∑L
t=B+1

1
nc(X,Yσ(t)).

If we define two linear operators A : L2(ρ0)→ L2(ρ1) and its adjoint A∗ : L2(ρ1)→ L2(ρ0) by

(Af)(y) =

∫
f(x)ξ(x, y)ρ0(x)dx and (A∗g)(x) =

∫
g(y)ξ(x, y)ρ1(y)dy. (11)

Then (10) becomes

κ1,0(Xi) = f(Xi) +A∗g(Xi) and κ0,1(Yi) = g(Yi) +Af(Yi). (12)

Hence, we can derive f and g by solving this linear system, i.e.,

f = (I −A∗A)−1(κ1,0 −A∗κ0,1) and g = (I −AA∗)−1(κ0,1 −Aκ1,0). (13)

Step 2. Control the remainder R1 := Tn− θ− 1
n

∑n
i=1[f(Xi) + g(Yi)] under the measure µnε . Some

algebra shows that R1 = Un/Dn, where

Un =
1

n · n!

∑
σ∈Sn

c̃(X,Yσ)ξ⊗(X,Yσ) and Dn =
1

n!

∑
σ∈Sn

ξ⊗(X,Yσ)

with c̃(x, y) = c(x, y) − θ − f(x) − g(y) and ξ⊗(X,Yσ) =
∏n
i=1 ξ(Xi, Yσi). By a change of

measure argument, we obtain

µnε [|R1|] = E[|Un|] ≤
√
E[U2

n],

where E is the expectation under (ρ0 ⊗ ρ1)n. Note that Un is a U-statistic of order n. To prove
E[U2

n] = o(n−1), we derive a novel Hoeffding decomposition [24, Chapter 11] of Un and upper
bound its second moment.

Remark 1. Our results actually hold for a large class of functions beyond the cost function: given an
arbitrary function η ∈ L1(µε), the same results hold for Tn(η) :=

∫
ηdµ̂nε and θ(η) :=

∫
ηdµε.

5 Two-sample testing with the Schrödinger bridge statistic

Given the two independent i.i.d. samples {Xi}ni=1 and {Yi}ni=1, suppose that we are interested in
determining whether they come from the same distribution. This can be formalized as a two-sample
hypothesis testing problem:

H0 : ρ0 = ρ1 ↔ H1 : ρ0 6= ρ1. (14)

That is, we test the null hypothesis that they come from the same distribution against the alternative
hypothesis that they do not. To proceed, we define a test statistic, i.e., a real-valued function of the
data, such that the larger it is the less likely H0 is true. Then we choose a threshold hn and adopt
the decision rule (or test) 1{Sn > hn}, that is, we reject the null if the test statistic exceeds the
threshold. The performance of a test can be measured by two quantities: the type I error rate, i.e., the
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Figure 1: Statistical power versus µ for the pair N (0, 1) and N (µ, 1).
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Figure 2: Statistical power versus σ for the pair N (0, 1) and N (0, σ2).

probability of rejecting the null given that the null is true, and the statistical power, i.e., the probability
of rejecting the null given that the null is not true.

Since the discrete Schrödinger bridge can be used to measure the difference between the two empirical
measures ρ̂n0 and ρ̂n1 , it can be used as a test statistic in two-sample testing. However, there are two
caveats. First, the Schrödinger bridge statistic is biased in the sense that its limit θ 6= 0 when ρ0 = ρ1.
We instead use the centered Schrödinger bridge statistic

T̄n := Tn(ρ̂n0 , ρ̂
n
1 )− 1

2
Tn(ρ̂n0 , ρ̂

n
0 )− 1

2
Tn(ρ̂n1 , ρ̂

n
1 ), (15)

where Tn(ρ̂ni , ρ̂
n
j ) is the statistic associated with the discrete Schrödinger bridge connecting ρ̂ni and

ρ̂nj for i, j ∈ {0, 1}. Note that this centering procedure also appears in [19] where the discrete EOT
is used for two-sample testing. Second, since the space of permutations Sn is prohibitively large, it
is infeasible to compute the Schrödinger bridge statistic exactly. We adopt here a Gibbs sampling
approach and summarize the procedure in Algorithm 1.

6 Experiments

In this section, we apply the (centered) Schrödinger bridge (SCB) statistic to two-sample testing
on both synthetic and real data. We compare its type I error rate and statistical power with the
discrete EOT [19] and the maximum mean discrepancy (MMD) [12]. For comparison purposes,
all the thresholds are determined by permutation test: we 1) randomly permute the pooled sample
(X1, . . . , Xn, Y1, . . . , Yn), 2) compute the test statistic for the permuted sample, and 3) repeat
previous two steps for 500 times and choose the threshold as the upper 5-percentile of these statistics.
This procedure guarantees that the type I error rates of the three tests are all close to 0.05.
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Figure 3: Statistical power versus µ for the pair VM(0, 1) and VM(µ, 1).
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Figure 4: Statistical power versus κ for the pair VM(0, 1) and VM(0, κ).

6.1 Synthetic data

Settings. We consider 4 different pairs of distributions: 1) N (0, 1) v.s. N (µ, 1), 2) N (0, 1)
v.s. N (0, σ2), 3) VM(0, 1) v.s. VM(µ, 1), and 4) VM(0, 1) v.s. VM(0, κ), where VM(µ, κ) is
the von Mises distribution with location µ and concentration κ. For each pair of distributions (ρ0, ρ1),
we independently generate n = 50 i.i.d. observations from each of the distributions. Then we perform
the three tests and record their decisions. For the Schrödinger bridge test and EOT test, we use
the quadratic cost and set ε ∈ {0.01, 0.1, 1, 10, 100}. For the MMD test, we use the RBF kernel
k(x, x′) = exp(−‖x− x′‖2 /ε) and set ε ∈ {0.01, 0.1, 1, 10, 100}. We repeat the whole procedure
200 times and compute the rejection frequency. We plot the rejection frequency as we vary the
parameter (e.g., µ in the first pair). When ρ0 = ρ1, the rejection frequency is an estimate of the type I
error rate; when ρ0 6= ρ1, it is an estimate of the statistical power.

Normal distribution. The results for normal distributions are in Figure 1 and Figure 2. When the
two distributions differ in mean, the Schrödinger bridge test demonstrates similar performance across
different values of ε. The EOT test shows a similar behavior except for ε = 0.01: the statistical power
increases in the beginning and then decreases as µ increases. This decline is due to the computational
instability of the Sinkhorn algorithm used to compute the EOT when ε is relatively small. As for
the MMD test, its performance largely depends on the parameter in the RBF kernel. The three tests
perform analogously with their best parameter. When the two distributions differ in variance, most
of the findings are the same. The parameter ε = 100 gives significantly worse performance and the
instability issue in the EOT test is more prominent.

Von Mises distribution. The results for von Mises distributions are in Figure 3 and Figure 4.
The Schrödinger bridge test and EOT test performs similarly without the instability issue. The
performance of the MMD test heavily depends on the parameter ε, and its statistical power with the
best parameter is close to the ones of the Schrödinger bridge test and the EOT test.
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Figure 5: Type I error rate versus sample size for digits 3 and 3.
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Figure 6: Statistical power versus sample size for digits 3 and 5.

6.2 Real data

Settings. We compare the three tests on the MNIST dataset [14]. Given two digits m1 and m2, we
randomly sample n ∈ {5, 10, 15, 20, 25, 30} images from each of the two classes. For the Schrödinger
bridge test and EOT test, we define the cost on images as follows: for each image M , we normalize it
and view it as a discrete distribution; the cost between two images is then chosen as the Wasserstein-2
distance between the corresponding discrete distributions. Again, we set the regularization parameter
ε ∈ {0.01, 0.1, 1, 10, 100}. For the MMD test, we use k(M1,M2) := exp(−c(M1,M2)/ε) as the
kernel on images, where c is the cost defined above. We repeat the whole procedure 200 times and
plot the rejection frequency as we vary the sample size.

Results. The results for m1 = m2 = 3 is shown in Figure 5. The type I error rate of all the tests
are close to 0.05 with different parameters. The results for m1 = 3 and m2 = 5 is presented in
Figure 6. All the tests performs similarly with the MMD test with ε = 0.01 slightly better. All the
tests achieve power 1 with a relatively small sample size, and their performance are robust to the
value of parameters considered in the experiments.
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A Appendix

Given a probability measure ν and p ≥ 1, let Lp(ν) be the space of functions that have finite
p-th norm under ν. We follow the standard abuse of keeping the same notation for an absolutely
continuous measure and its density.
Assumption 1. All the results stated below hold under the following assumptions.

1. c is a nonnegative continuous cost function such that c(x, y) = 0 if and only if x = y, and
satisfies the following asymptotic growth bound: for some a, b > 0 and for some p ≥ 1,

c(x, y) ≤ a+ b (|x|p + |y|p) , as |x|, |y| → ∞. (16)

2. ρ0 and ρ1 have finite pth moment. Consequently,
∫
c(x, y)dµε <∞.

3. The Schrödinger potentials are integrable, i.e., aε ∈ L1(ρ0) and bε ∈ L1(ρ1). See [22] for
sufficient conditions.

Let η be any function on Rd × Rd integrable under µε. Let Tn = Tn(η) :=
∫
η(x, y)dµ̂nε and let

θ =
∫
η(x, y)dµε. Explicitly, Tn =

∑
σ∈Sn q

∗
ε (σ) 1

N

∑n
i=1 η(Xi, Yσi).

Theorem 2. (Consistency.) As n → ∞, Tn converges in probability to θ for all η ∈ L1(µε). In
particular, ν̂nε converges weakly to µε, in probability.

Tn is a rather complicated function of the two empirical distributions (ρ̂n0 , ρ̂
n
1 ). Our next result shows

that it can, in fact, be well approximated by linear functions of the two measures in a way that is
similar to the first term of a Taylor expansion of smooth functions. Let us start by defining some
operators on various L2 spaces.
Definition 1. Define linear operators A : L2(ρ0)→ L2(ρ1) and its adjoint A∗ : L2(ρ1)→ L2(ρ0)
by

(Af)(y) =

∫
f(x)ξ(x, y)ρ0(x)dx, (A∗g)(x) =

∫
g(y)ξ(x, y)ρ1(y)dy. (17)

It can be shown thatA is a well-defined linear operator, andA∗A andAA∗ are two Markov operators
defined on L2(ρ0) and L2(ρ1), respectively. We denote by Iν : L2(ν)→ L2(ν) the identity operator
on L2(ν). When the context is clear, we will write I for short. We further make the following
assumptions.
Assumption 2. All the results stated below hold under the following additional assumptions.

1. ξ ∈ L2(ρ0 ⊗ ρ1), η ∈ L2(µε) and ηξ ∈ L2(ρ0 ⊗ ρ1).

2. As a consequence [2, Appendix A.4], the operator A is compact. Then the operators A∗A
and AA∗ admit eigenvalue decomposition A∗Aαk = s2

kαk and AA∗βk = s2
kβk for all

k ≥ 0 with s0 = 1, α0 = β0 = 1 and 0 ≤ sk ≤ 1 for all k ≥ 0. Moreover, it holds
that Aαk = skβk and A∗βk = skαk; see [11, Chapter 6.1]. We call {sk}k≥0 the singular
values of A and A∗, and call {αk}k≥0 and {βk}k≥0 the singular functions.

3. The operators A∗A and AA∗ have positive eigenvalue gap, i.e., sk ≤ s1 < 1 for all k ≥ 1.
By Jentzsch’s Theorem [21, Theorem 7.2], a sufficient condition is that ξ is bounded.

Theorem 3. (First order chaos decomposition) Recall θ :=
∫
η(x, y)dµε. Define

κ1,0(x) :=

∫
[η(x, y)− θ]ξ(x, y)ρ1(y)dy, (18)

κ0,1(y) :=

∫
[η(x, y)− θ]ξ(x, y)ρ0(x)dx. (19)

Then, Tn − θ = L1 + op
(
1/
√
n
)
, where

L1 :=
1

n

n∑
i=1

[(I −A∗A)−1(κ1,0 −A∗κ0,1)(Xi) + (I −AA∗)−1(κ0,1 −Aκ1,0)(Yi)].

In particular, we have
√
n(Tn − θ)→d N (0, ς2), where ς2 = ς2(η), as a function of η, is given by

ς2 = E
[
(I −A∗A)−1(κ1,0 −A∗κ0,1)(X1)2

]
+ E

[
(I −AA∗)−1(κ0,1 −Aκ1,0)(Y1)2

]
.
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