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Entropy Regularized Independence Criterion

Statistical Test of Independence

Problem:
I Let (X ,Y) ∼ PXY on X × Y with marginals PX and PY .
I Let {(Xi,Yi)}ni=1 be i.i.d. copies of (X ,Y).

H0 : X and Y are independent↔ H1 : X and Y are dependent.

Strategy:
I Define an independence criterion T (X ,Y) such that
. T (X ,Y) ≥ 0,
. T (X ,Y) = 0 i� X and Y are independent.

I Estimate the criterion from data Tn(X ,Y).
I Choose a critical value tn(α) and reject H0 if Tn(X ,Y) > tn(α).
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Entropy Regularized Independence Criterion

Entropy Regularized Optimal Transport Independence Criterion

ETIC—define T (X ,Y) by

S̄λ(PXY , PX ⊗ PY ) := Sλ(PXY , PX ⊗ PY )− 1
2
Sλ(PXY , PXY )− 1

2
Sλ(PX ⊗ PY , PX ⊗ PY ),

where Sλ(P,Q) the cost of entropy regularized optimal transport (EOT)

min
γ∈CP(P,Q)

[∫
c(z, z ′)dγ(z, z ′) + λKL(γ‖P ⊗ Q)

]
.

I Consider an additive cost:

c
(
(x, y), (x ′, y ′)

)
= c1(x, x ′) + c2(y, y ′).

I ETIC is a valid independence criterion with appropriate c1 and c2.
I Assumptions on ci via kernels ki := exp{−ci/λ} for i ∈ {1, 2}.
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Entropy Regularized Independence Criterion

Computational Aspects of ETIC

ETIC test statistic:

Tn(X ,Y) = S̄λ(P̂XY , P̂X ⊗ P̂Y ),

where P̂XY = 1
n

∑n
i=1 δ(Xi ,Yi), P̂X = 1

n

∑n
i=1 δXi , and P̂Y = 1

n

∑n
i=1 δYi .

I Naïve Sinkhorn algorithm: Õ(n4) time and O(n4) space.
I Tensor Sinkhorn algorithm: Õ(n3) time and O(n2) space.
I Tensor Sinkhorn with random feature approximation: Õ(n2) time and O(n2) space.

Cost matrix Computation per iteration

Sinkhorn n2 × n2 n2 × n2 and n2 × 1

Tensor Sinkhorn Two n× n n× n and n× n

Tensor Sinkhorn with RF Two n× p n× n and n× p
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Entropy Regularized Independence Criterion

Statistical Properties of ETIC

Theorem (Liu et al. ’22)

Assume that c is the weighted quadratic cost and PX and PY are supported on a bounded
domain with radius R. Then we have, with probability at least 1− δ,

|Tn(X ,Y)− T (X ,Y)| ≤ Cd

(
λ+

R5d+16

λ5d/2+7

√
log

6
δ

)
1√
n
.

Remark
I Rate of convergence O(n−1/2).
I The choice of λ = R2 gives Cd

√
log (6/δ)R2/

√
n.

I T (X ,Y) = Tλ(X ,Y)→ 0 as λ→∞.
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Entropy Regularized Independence Criterion

Statistical Properties of ETIC

Theorem (Liu et al. ’22)

Assume that c is the weighted quadratic cost and PX and PY are supported on a bounded
domain with radius R. Then we have, with probability at least 1− δ,

|Tn(X ,Y)− T (X ,Y)| ≤ Cd

(
λ+

R5d+16

λ5d/2+7

√
log

6
δ

)
1√
n
.

Remark
Theorem 2 implies that the power of the ETIC test is asymptotically one.
I Under H0, T (X ,Y) = 0 and thus the critical value tn(α) should be of order O(n−1/2).
I Under H1, T (X ,Y) > 0 and thus Tn(X ,Y) will alway exceed tn(α) as n→∞.
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Entropy Regularized Independence Criterion

Independence Testing on Bilingual Text

Bilingual text
I Parallel European Parliament corpus (Koehn ’05).
I Randomly select n = 64 English documents and a paragraph in each document.
I (English paragraph, random paragraph in the same document in French).
I Feature embeddings of dimension 768 with LaBSE (Feng et al. ’20).

Independence tests
I ETIC with a weighted quadratic cost inducing Gaussian kernels

k1(x, x ′) := exp{−
∥∥x − x ′

∥∥2
/σ1} and k2(y, y ′) := exp{−

∥∥y − y ′
∥∥2
/σ2}.

I Hilbert-Schmidt independence criterion (HSIC) with the same kernels.
I Median heuristic: σ1 = r1Mx and σ2 = r2My with r1, r2 ∈ [0.25, 4].
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Entropy Regularized Independence Criterion

Independence Testing on Bilingual Text

ETIC outperforms HSIC for many values of r1 and r2.
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Entropy Regularized Independence Criterion

Conclusion

I A new independence criterion ETIC and the associated test.
I An e�icient algorithm to compute empirical ETIC.
I Amenable to gradient backpropagation.
I Finite-sample guarantees for its statistical properties.
I Higher power with a large range of hyperparameters.
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Appendix

The Schrödinger Bridge Problem and Entropy Regularized OT

The Schrödinger bridge (SCB) problem
I Schrödinger’s lazy gas experiment (Schrödinger ’32).
I The SCB problem in continuum (Föllmer ’88, Léonard ’12).
I Survey on SCB (Léonard ’14, Chen et al. ’21).

Discrete entropy regularized optimal transport (EOT)
I Discrete EOT (Cuturi ’13, Ferradans et al. ’14).
I Limit laws (Bigot et al. ’19, Kla� et al. ’20).
I Finite-sample bounds (Genevay et al. ’19, Mena and Weed ’19).

Discrete Schrödinger bridge
I Discrete SCB for a particular cost (Pal and Wong ’20).
I Discrete SCB for general costs (HLP ’20).
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Appendix

Properties of ETIC

Proposition (Liu et al. ’22)
Let c be a continuous cost function. If either c is bounded or PXY and PX ⊗ PY have compact
support, it holds that

Tλ(X ,Y)→

{
0 if c = c1 ⊕ c2

− 1
2HSICc1,c2(X ,Y) if c = c1 ⊗ c2,

as λ→∞.

Moreover, if both PXY and PX ⊗ PY are densities (or discrete measures), then

Tλ(X ,Y)→ COT(PXY , PX ⊗ PY ), as λ→ 0.
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Appendix

Statistical Properties of ETIC

Empirical Sinkhorn divergence

CSD

(
1
n

n∑
i=1

δUi ,
1
n

n∑
i=1

δVi

)
.

Empirical ETIC

CSD

(
1
n

n∑
i=1

δ(Xi ,Yi),
1
n2

n∑
i=1

n∑
j=1

δ(Xi ,Yj)

)
.

First marginnal Second marginal Independent marginals?

SD Sum of i.i.d. point masses Sum of i.i.d. point masses Yes

ETIC Sum of i.i.d. point masses Sum of dependent point masses No
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Appendix

Statistical Properties of ETIC

Theorem (Liu et al. ’22)

Assume that c1 and c2 are quadratic costs and PX and PY are sub-Gaussian with parameter σ2.
Then we have

E |Tn(X ,Y)− T (X ,Y)| ≤ Cd

(
1 +

σd5d/2e+6

λd5d/4e+3

)
λ√
n
.

Remark

When λ := λn = o(1) is chosen such that λn = ω(n−1/(d5d/2e+4)), we have

Tn(X ,Y)→L1 COT(PXY , PX ⊗ PY ) = W2
2(PXY , PX ⊗ PY ).
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Appendix

The Tensor Sinkhorn Algorithm

I A and B distributions on {xi}ni=1 × {yi}ni=1.
I K1 = exp(−C1/λ) and K2 = exp(−C2/λ).
I Compute CEOT(A,B).
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Appendix

Random Feature Approximation

K

n

n

=

ξ

n

p

ξ>

n

p
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Appendix

ETIC with Random Features

I Consider Gibbs kernels of the form

k1(x, x ′) =

∫
ϕ(x, u)>ϕ(x ′, u)dρ1(u) and k2(y, y ′) =

∫
ψ(y, v)>ψ(y ′, v)dρ2(v).

I Obtain an i.i.d. sample u := {uk}pk=1 and approximate k1(x, x ′) by

k1,u(x, x ′) :=
1
p

p∑
k=1

ϕ(x, uk)>ϕ(x ′, uk).

I Obtain an i.i.d. sample v := {vk}pk=1 and approximate k2(y, y ′) by

k2,v(y, y ′) :=
1
p

p∑
k=1

ψ(y, vk)>ψ(y ′, vk).
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Appendix

ETIC with Random Features

Approximate c((x, y), (x ′, y ′)) by

cu,v((x, y), (x ′, y ′)) := −λ log k1,u(x, x ′)− λ log k2,v(y, y ′).

Proposition (Liu et al. ’22)

Let p = Ω(τ−2 log (n/δ)). Under appropriate assumptions, it holds that, with probability at
least 1− δ, ∣∣CEOT,cu,v(A,B)− CEOT,c(A,B)

∣∣ ≤ τ.
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Appendix

ETIC-Based Tests

The ETIC test with regularization parameter λ:

ψ(α) := 1{Tn,λ(X ,Y) > tn,λ(α)},

where α is the significance level and Hn,λ(α) is the critical value.

The adaptive ETIC test:

ψa(α) := 1

{
max
λ∈Λ

T̄n,λ(X ,Y) > tn,Λ(α)

}
I Λ a finite set of regularization parameters.
I T̄n,λ(X ,Y) = [Tn,λ(X ,Y)− E[Tn,λ(X ,Y)]]/Sd(Tn,λ(X ,Y)) the studentized version.
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