## Entropy Regularized Optimal Transport Independence Criterion

#### Lang Liu, Soumik Pal, Zaid Harchaoui

University of Washington

March 30, 2022







## Team



Lang Liu



Soumik Pal



Zaid Harchaoui

## Statistical Test of Independence

Problem:

- Let  $(X, Y) \sim P_{XY}$  on  $\mathcal{X} \times \mathcal{Y}$  with marginals  $P_X$  and  $P_Y$ .
- Let  $\{(X_i, Y_i)\}_{i=1}^n$  be i.i.d. copies of (X, Y).

 $\mathbf{H}_0$ : *X* and *Y* are independent  $\leftrightarrow \mathbf{H}_1$ : *X* and *Y* are dependent.

## Statistical Test of Independence

Problem:

- Let  $(X, Y) \sim P_{XY}$  on  $\mathcal{X} \times \mathcal{Y}$  with marginals  $P_X$  and  $P_Y$ .
- Let  $\{(X_i, Y_i)\}_{i=1}^n$  be i.i.d. copies of (X, Y).

 $\mathbf{H}_0$ : *X* and *Y* are independent  $\leftrightarrow \mathbf{H}_1$ : *X* and *Y* are dependent.

#### Strategy:

- Define an independence criterion T(X, Y) such that
   ▷ T(X, Y) ≥ 0,
   ▷ T(X, Y) = 0 iff X and Y are independent.
- Estimate the criterion from data  $T_n(X, Y)$ .
- Choose a critical value  $t_n(\alpha)$  and reject  $\mathbf{H}_0$  if  $T_n(X, Y) > t_n(\alpha)$ .

## Entropy Regularized Optimal Transport Independence Criterion

**ETIC**—define T(X, Y) by

$$\bar{S}_{\lambda}(P_{XY}, P_X \otimes P_Y) := S_{\lambda}(P_{XY}, P_X \otimes P_Y) - \frac{1}{2}S_{\lambda}(P_{XY}, P_{XY}) - \frac{1}{2}S_{\lambda}(P_X \otimes P_Y, P_X \otimes P_Y),$$

where  $S_{\lambda}(P, Q)$  the cost of entropy regularized optimal transport (EOT)

$$\min_{\gamma\in \operatorname{CP}(P,Q)}\left[\int c(z,z')\mathrm{d}\gamma(z,z')+\lambda\operatorname{KL}(\gamma\|P\otimes Q)
ight].$$

## Entropy Regularized Optimal Transport Independence Criterion

**ETIC**—define T(X, Y) by

$$\bar{S}_{\lambda}(P_{XY}, P_X \otimes P_Y) := S_{\lambda}(P_{XY}, P_X \otimes P_Y) - \frac{1}{2}S_{\lambda}(P_{XY}, P_{XY}) - \frac{1}{2}S_{\lambda}(P_X \otimes P_Y, P_X \otimes P_Y),$$

where  $S_{\lambda}(P, Q)$  the cost of entropy regularized optimal transport (EOT)

$$\min_{\gamma \in \operatorname{CP}(P,Q)} \left[ \int c(z,z') \mathrm{d}\gamma(z,z') + \lambda \operatorname{KL}(\gamma \| P \otimes Q) 
ight].$$

• Consider an *additive cost*:

$$c((x, y), (x', y')) = c_1(x, x') + c_2(y, y').$$

- ► ETIC is a **valid independence criterion** with appropriate *c*<sub>1</sub> and *c*<sub>2</sub>.
- Assumptions on  $c_i$  via kernels  $k_i := \exp\{-c_i/\lambda\}$  for  $i \in \{1, 2\}$ .

ETIC test statistic:

$$T_n(X, Y) = \bar{S}_{\lambda}(\hat{P}_{XY}, \hat{P}_X \otimes \hat{P}_Y),$$

where  $\hat{P}_{XY} = \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_i)}$ ,  $\hat{P}_X = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$ , and  $\hat{P}_Y = \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_i}$ .

ETIC test statistic:

$$T_n(X,Y)=\bar{S}_{\lambda}(\hat{P}_{XY},\hat{P}_X\otimes\hat{P}_Y),$$

where  $\hat{P}_{XY} = \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_i)}$ ,  $\hat{P}_X = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$ , and  $\hat{P}_Y = \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_i}$ .

► Naïve Sinkhorn algorithm:  $\tilde{O}(n^4)$  time and  $O(n^4)$  space.

|          | Cost matrix      | Computation per iteration           |  |
|----------|------------------|-------------------------------------|--|
| Sinkhorn | $n^2 \times n^2$ | $n^2 \times n^2$ and $n^2 \times 1$ |  |

ETIC test statistic:

$$T_n(X, Y) = \bar{S}_{\lambda}(\hat{P}_{XY}, \hat{P}_X \otimes \hat{P}_Y),$$

where  $\hat{P}_{XY} = \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_i)}$ ,  $\hat{P}_X = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$ , and  $\hat{P}_Y = \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_i}$ .

- ► Naïve Sinkhorn algorithm:  $\tilde{O}(n^4)$  time and  $O(n^4)$  space.
- Tensor Sinkhorn algorithm:  $\tilde{O}(n^3)$  time and  $O(n^2)$  space.

|                 | Cost matrix Computation per iteration |                                     |
|-----------------|---------------------------------------|-------------------------------------|
| Sinkhorn        | $n^2 \times n^2$                      | $n^2 \times n^2$ and $n^2 \times 1$ |
| Tensor Sinkhorn | Two $n \times n$                      | $n \times n$ and $n \times n$       |

ETIC test statistic:

$$T_n(X, Y) = \bar{S}_{\lambda}(\hat{P}_{XY}, \hat{P}_X \otimes \hat{P}_Y),$$

where  $\hat{P}_{XY} = \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_i)}$ ,  $\hat{P}_X = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$ , and  $\hat{P}_Y = \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_i}$ .

- Naïve Sinkhorn algorithm:  $\tilde{O}(n^4)$  time and  $O(n^4)$  space.
- Tensor Sinkhorn algorithm:  $\tilde{O}(n^3)$  time and  $O(n^2)$  space.
- Tensor Sinkhorn with random feature approximation:  $\tilde{O}(pn^2)$  time and  $O(n^2)$  space.

|                         | Cost matrix Computation per iteration |                                     |
|-------------------------|---------------------------------------|-------------------------------------|
| Sinkhorn                | $n^2 \times n^2$                      | $n^2 \times n^2$ and $n^2 \times 1$ |
| Tensor Sinkhorn         | Two $n \times n$                      | $n \times n$ and $n \times n$       |
| Tensor Sinkhorn with RF | Two $n \times p$                      | $n \times n$ and $n \times p$       |

#### Theorem (Liu et al. '22)

Assume that c is the weighted quadratic cost and  $P_X$  and  $P_Y$  are supported on a bounded domain with radius R. Then we have, with probability at least  $1 - \delta$ ,

$$|T_n(X,Y) - T(X,Y)| \leq C_d \left(\lambda + \frac{R^{5d+16}}{\lambda^{5d/2+7}} \sqrt{\log \frac{6}{\delta}}\right) \frac{1}{\sqrt{n}}.$$

#### Theorem (Liu et al. '22)

Assume that c is the weighted quadratic cost and  $P_X$  and  $P_Y$  are supported on a bounded domain with radius R. Then we have, with probability at least  $1 - \delta$ ,

$$|T_n(X,Y) - T(X,Y)| \leq C_d \left(\lambda + \frac{R^{5d+16}}{\lambda^{5d/2+7}} \sqrt{\log \frac{6}{\delta}}\right) \frac{1}{\sqrt{n}}$$

#### Remark

- Rate of convergence  $O(n^{-1/2})$ .
- The choice of  $\lambda = R^2$  gives  $C_d \sqrt{\log(6/\delta)} R^2 / \sqrt{n}$ .

• 
$$T(X, Y) = T_{\lambda}(X, Y) \rightarrow 0$$
 as  $\lambda \rightarrow \infty$ .

#### Theorem (Liu et al. '22)

Assume that c is the weighted quadratic cost and  $P_X$  and  $P_Y$  are supported on a bounded domain with radius R. Then we have, with probability at least  $1 - \delta$ ,

$$|T_n(X,Y) - T(X,Y)| \leq C_d \left(\lambda + rac{R^{5d+16}}{\lambda^{5d/2+7}}\sqrt{\lograc{6}{\delta}}
ight)rac{1}{\sqrt{n}}$$

#### Remark

Theorem 2 implies that the power of the ETIC test is asymptotically one.

- Under  $\mathbf{H}_0$ , T(X, Y) = 0 and thus the critical value  $t_n(\alpha)$  should be of order  $O(n^{-1/2})$ .
- Under  $H_1$ , T(X, Y) > 0 and thus  $T_n(X, Y)$  will alway exceed  $t_n(\alpha)$  as  $n \to \infty$ .

# Independence Testing on Bilingual Text

### **Bilingual text**

- ► Parallel European Parliament corpus (Koehn '05).
- Randomly select n = 64 English documents and a paragraph in each document.
- (English paragraph, random paragraph in the same document in French).
- ► Feature embeddings of dimension 768 with LaBSE (Feng et al. '20).

# Independence Testing on Bilingual Text

## **Bilingual text**

- ► Parallel European Parliament corpus (Koehn '05).
- Randomly select n = 64 English documents and a paragraph in each document.
- (English paragraph, random paragraph in the same document in French).
- ► Feature embeddings of dimension 768 with LaBSE (Feng et al. '20).

### Independence tests

► ETIC with a weighted quadratic cost inducing Gaussian kernels

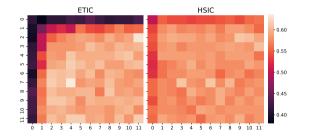
$$k_1(x,x'):=\exp\{-\left\|x-x'\right\|^2/\sigma_1\}$$
 and  $k_2(y,y'):=\exp\{-\left\|y-y'\right\|^2/\sigma_2\}.$ 

- ► Hilbert-Schmidt independence criterion (HSIC) with the same kernels.
- Median heuristic:  $\sigma_1 = r_1 M_x$  and  $\sigma_2 = r_2 M_y$  with  $r_1, r_2 \in [0.25, 4]$ .

Entropy Regularized Independence Criterion

## Independence Testing on Bilingual Text

#### ETIC outperforms HSIC for many values of $r_1$ and $r_2$ .



## Conclusion

- A new independence criterion ETIC and the associated test.
- An efficient algorithm to compute empirical ETIC.
- Amenable to gradient backpropagation.
- ► Finite-sample guarantees for its statistical properties.
- Higher power with a large range of hyperparameters.

Code



# Appendix

# The Schrödinger Bridge Problem and Entropy Regularized OT

## The Schrödinger bridge (SCB) problem

- Schrödinger's lazy gas experiment (Schrödinger '32).
- ► The SCB problem in continuum (Föllmer '88, Léonard '12).
- Survey on SCB (Léonard '14, Chen et al. '21).

#### Discrete entropy regularized optimal transport (EOT)

- ► Discrete EOT (Cuturi '13, Ferradans et al. '14).
- ► Limit laws (Bigot et al. '19, Klatt et al. '20).
- ► Finite-sample bounds (Genevay et al. '19, Mena and Weed '19).

#### Discrete Schrödinger bridge

- Discrete SCB for a particular cost (Pal and Wong '20).
- ► Discrete SCB for general costs (HLP '20).

## Properties of ETIC

#### Proposition (Liu et al. '22)

Let c be a continuous cost function. If either c is bounded or  $P_{XY}$  and  $P_X \otimes P_Y$  have compact support, it holds that

$$T_{\lambda}(X,Y) \to \begin{cases} 0 & \text{if } c = c_1 \oplus c_2 \\ -\frac{1}{2} HSIC_{c_1,c_2}(X,Y) & \text{if } c = c_1 \otimes c_2, \end{cases} \quad \text{as } \lambda \to \infty$$

Moreover, if both  $P_{XY}$  and  $P_X \otimes P_Y$  are densities (or discrete measures), then

$$T_{\lambda}(X, Y) \to C_{OT}(P_{XY}, P_X \otimes P_Y), \quad as \ \lambda \to 0.$$

#### **Empirical Sinkhorn divergence**

$$C_{\rm SD}\left(\frac{1}{n}\sum_{i=1}^n \delta_{U_i}, \frac{1}{n}\sum_{i=1}^n \delta_{V_i}\right).$$

$$C_{\rm SD}\left(\frac{1}{n}\sum_{i=1}^n \delta_{(\boldsymbol{X}_i,\boldsymbol{\gamma}_i)}, \frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n \delta_{(\boldsymbol{X}_i,\boldsymbol{\gamma}_j)}\right).$$

|      | First marginnal            | Second marginal               | Independent marginals? |
|------|----------------------------|-------------------------------|------------------------|
| SD   | Sum of i.i.d. point masses | Sum of i.i.d. point masses    | Yes                    |
| ETIC | Sum of i.i.d. point masses | Sum of dependent point masses | Νο                     |

### Theorem (Liu et al. '22)

Assume that  $c_1$  and  $c_2$  are quadratic costs and  $P_X$  and  $P_Y$  are sub-Gaussian with parameter  $\sigma^2$ . Then we have

$$\mathbb{E} |T_n(X,Y) - T(X,Y)| \leq C_d \left(1 + \frac{\sigma^{\lceil 5d/2 \rceil + 6}}{\lambda^{\lceil 5d/4 \rceil + 3}}\right) \frac{\lambda}{\sqrt{n}}.$$

#### Remark

When 
$$\lambda := \lambda_n = o(1)$$
 is chosen such that  $\lambda_n = \omega(n^{-1/(\lceil 5d/2 \rceil + 4)})$ , we have

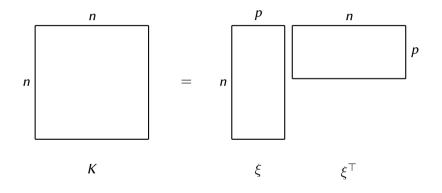
$$T_n(X,Y) \rightarrow_{\mathsf{L}^1} C_{OT}(P_{XY},P_X \otimes P_Y) = \mathsf{W}_2^2(P_{XY},P_X \otimes P_Y).$$

## The Tensor Sinkhorn Algorithm

- A and B distributions on  $\{x_i\}_{i=1}^n \times \{y_i\}_{i=1}^n$ .
- $K_1 = \exp(-C_1/\lambda)$  and  $K_2 = \exp(-C_2/\lambda)$ .
- Compute  $C_{EOT}(A, B)$ .

Algorithm 1 Tensor Sinkhorn Algorithm 1: Input: A, B, K<sub>1</sub>, and K<sub>2</sub>. 2: Initialize  $U \leftarrow \mathbf{1}_{\mathbf{n}\times\mathbf{n}}$  and  $V \leftarrow \mathbf{1}_{\mathbf{n}\times\mathbf{n}}$ . 3: while not converge do 4:  $U \leftarrow A \oslash (K_1 V K_2^{\top})$  and  $V = B \oslash (K_1^{\top} U K_2)$ . 5: end while 6: Output:  $\langle \varepsilon \log U, A \rangle_{\mathbf{F}} + \langle \varepsilon \log V, B \rangle_{\mathbf{F}}$ .

# Random Feature Approximation



## ETIC with Random Features

► Consider Gibbs kernels of the form

$$k_1(x,x') = \int \varphi(x,u)^\top \varphi(x',u) d
ho_1(u)$$
 and  $k_2(y,y') = \int \psi(y,v)^\top \psi(y',v) d
ho_2(v).$ 

• Obtain an i.i.d. sample  $\boldsymbol{u} := \{u_k\}_{k=1}^p$  and approximate  $k_1(x, x')$  by

$$k_{1,\boldsymbol{u}}(\boldsymbol{x},\boldsymbol{x}') := \frac{1}{p} \sum_{k=1}^{p} \varphi(\boldsymbol{x},\boldsymbol{u}_k)^{\top} \varphi(\boldsymbol{x}',\boldsymbol{u}_k).$$

• Obtain an i.i.d. sample  $\mathbf{v} := \{v_k\}_{k=1}^p$  and approximate  $k_2(y, y')$  by

$$k_{2,\mathbf{v}}(\mathbf{y},\mathbf{y}') := \frac{1}{p} \sum_{k=1}^{p} \psi(\mathbf{y},\mathbf{v}_k)^{\top} \psi(\mathbf{y}',\mathbf{v}_k).$$

## ETIC with Random Features

Approximate c((x, y), (x', y')) by

$$c_{oldsymbol{u},oldsymbol{v}}((x,y),(x',y')) := -\lambda \log k_{1,oldsymbol{u}}(x,x') - \lambda \log k_{2,oldsymbol{v}}(y,y').$$

#### Proposition (Liu et al. '22)

Let  $p = \Omega(\tau^{-2} \log (n/\delta))$ . Under appropriate assumptions, it holds that, with probability at least  $1 - \delta$ ,

$$\left|C_{EOT,c_{\boldsymbol{u},\boldsymbol{v}}}(A,B)-C_{EOT,c}(A,B)\right|\leq au.$$

## **ETIC-Based Tests**

#### The ETIC test with regularization parameter $\lambda$ :

$$\psi(\alpha) := \mathbb{1}\{T_{n,\lambda}(X,Y) > t_{n,\lambda}(\alpha)\},\$$

where  $\alpha$  is the significance level and  $H_{n,\lambda}(\alpha)$  is the critical value.

The adaptive ETIC test:

$$\psi_a(\alpha) := \mathbb{1}\left\{\max_{\lambda \in \Lambda} \overline{\mathcal{T}}_{n,\lambda}(X,Y) > t_{n,\Lambda}(\alpha)
ight\}$$

- Λ a finite set of regularization parameters.
- $\overline{T}_{n,\lambda}(X,Y) = [T_{n,\lambda}(X,Y) \mathbb{E}[T_{n,\lambda}(X,Y)]]/\mathrm{Sd}(T_{n,\lambda}(X,Y))$  the studentized version.