Statistical Divergences for Learning and Inference: A Non-Asymptotic Viewpoint

Lang Liu

University of Washington

September 22, 2022

Committee: Zaid Harchaoui (Chair), Soumik Pal (Co-Chair) Thomas Richardson, Kevin Jamieson, Hanna Hajishirzi (GSR)

Motivating Examples: Statistical Estimation

- **Data** $Z_1, \ldots, Z_n \overset{\text{i.i.d.}}{\sim} P$.
- **Parametric family** $\mathcal{P}_{\Theta} := \{ P_{\theta} : \theta \in \Theta \subset \mathbb{R}^d \}$, where Θ is convex and compact.
- **Goal:** identify θ_* so that P_{θ_*} is "closest" to *P*.

Part III

Motivating Examples: Independence Testing

- **Data** $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} \mu_{XY}$ with marginals μ_X and μ_Y .
- **Goal:** determine whether *X* is independent of *Y*.
- **Strategy:** measure the "distance" between μ_{XY} and $\mu_X \otimes \mu_Y$.

Motivating Examples: Generative Model Comparison[†]

[†]Liu et al. In NeurIPS, 2021.

Liu (UW)

► Kullback-Leibler (KL) divergence

$$\operatorname{KL}(P \| Q) := \int \log \left(\mathrm{d} P / \mathrm{d} Q \right) \mathrm{d} P.$$

► Minimum KL estimation

$$\theta_{\star} := \operatorname*{arg\,min}_{\theta \in \Theta} \operatorname{KL}(P \| P_{\theta}) = \operatorname*{arg\,min}_{\theta \in \Theta} \left\{ \mathbb{E}[\log P(Z)] - \mathbb{E}[\log P_{\theta}(Z)] \right\}.$$

► Kullback-Leibler (KL) divergence

$$\operatorname{KL}(P \| Q) := \int \log \left(\mathrm{d} P / \mathrm{d} Q \right) \mathrm{d} P.$$

Minimum KL estimation (maximum likelihood estimation)

$$\theta_{\star} := \operatorname*{arg\,min}_{\theta \in \Theta} \operatorname{KL}(P \| P_{\theta}) = \operatorname*{arg\,min}_{\theta \in \Theta} \Big\{ \mathbb{E}[-\log P_{\theta}(Z)] =: \underbrace{\mathcal{L}(\theta)}_{\operatorname{Risk}} \Big\}.$$

► Kullback-Leibler (KL) divergence

$$\operatorname{KL}(P \| Q) := \int \log \left(\mathrm{d} P / \mathrm{d} Q \right) \mathrm{d} P.$$

Minimum KL estimation (maximum likelihood estimation)

$$heta_{\star} := \operatorname*{arg\,min}_{ heta \in \Theta} \operatorname{KL}(P \| P_{ heta}) = \operatorname*{arg\,min}_{ heta \in \Theta} \left\{ \mathbb{E}[-\log P_{ heta}(Z)] =: \underbrace{L(heta)}_{\operatorname{Risk}} \right\}.$$

Maximum likelihood estimator (MLE)

$$\theta_n := \operatorname*{arg\,min}_{\theta \in \Theta} \Big\{ -\frac{1}{n} \sum_{i=1}^n \log P_{\theta}(Z_i) =: \underbrace{L_n(\theta)}_{\operatorname{Empirical risk}} \Big\}.$$

Asymptotic theory

► $\sqrt{n}(\theta_n - \theta_\star) \rightarrow_d \mathcal{N}(0, \Sigma).$

Asymptotic theory

- $\bullet \ n \| \boldsymbol{\Sigma}_n^{-1/2} (\boldsymbol{\theta}_n \boldsymbol{\theta}_\star) \|_2^2 \to_d \chi_d^2.$
- Slutsky's Lemma.
- Asymptotically tight.
- Valid for $n \to \infty$ and fixed *d*.

Non-asymptotic theory

Statistical Estimation with the KL Divergence

Asymptotic theory

- $\bullet \ n \| \boldsymbol{\Sigma}_n^{-1/2} (\theta_n \theta_\star) \|_2^2 \to_d \chi_d^2.$
- Slutsky's Lemma.
- Asymptotically tight.
- Valid for $n \to \infty$ and fixed *d*.

Asymptotic theory

- $\bullet \ n \| \boldsymbol{\Sigma}_n^{-1/2} (\theta_n \theta_\star) \|_2^2 \to_d \chi_d^2.$
- Slutsky's Lemma.
- Asymptotically tight.
- Valid for $n \to \infty$ and fixed *d*.

Non-asymptotic theory

- $\bullet \|\theta_n \theta_\star\|_2^2 \le O(n^{-1}).$
- Strong convexity.
- Conservative.
- Valid for all n and d.

Asymptotic theory

- $\bullet \ n \| \Sigma_n^{-1/2} (\theta_n \theta_\star) \|_2^2 \to_d \chi_d^2.$
- Slutsky's Lemma.
- Asymptotically tight.
- Valid for $n \to \infty$ and fixed *d*.

My contribution

- $\|\Sigma_n^{-1/2}(\theta_n \theta_\star)\|_2^2 \leq O(n^{-1}).$
- Pseudo self-concordance.
- Conservative.
- Valid for n > O(d).

Independence Testing with Entropy Regularized Optimal Transport

Monge-Kantorovich optimal transport

$$S(P,Q) := \min_{\gamma \in \operatorname{CP}(P,Q)} \int c \mathrm{d}\gamma.$$

- $c \ge 0$ cost function.
- CP(P, Q) set of couplings.

Independence Testing with Entropy Regularized Optimal Transport

Entropy regularized optimal transport (EOT)

$$S_arepsilon(P,Q) := \min_{\gamma \in \operatorname{CP}(P,Q)} \left[\int c \mathrm{d}\gamma + arepsilon \operatorname{KL}(\gamma \| P \otimes Q)
ight].$$

Plug-in estimator $S_{\varepsilon}(P_n, Q_n)$.

- **Faster rate of convergence**: $O(n^{-1/2})$ rather than $O(n^{-2/d})$.
- **Faster algorithm**: $O(n^2)$ time rather than $O(n^3)$ time.

Independence Testing with Entropy Regularized Optimal Transport

Entropy regularized optimal transport (EOT)

$$rgmin_{arepsilon\in \mathsf{CP}(P,Q)}\left[\int c\mathrm{d}\gamma+arepsilon\mathsf{KL}(\gamma\|P\otimes Q)
ight]=rgmin_{\gamma\in\mathsf{CP}(P,Q)}\mathsf{KL}(\gamma\|\mathcal{R}_arepsilon).$$

•
$$R_{\varepsilon}(z, z') \propto \exp(-c(z, z')/\varepsilon).$$

- Schrödinger bridge problem.
- ► Information projection.

Independence Testing with Entropy Regularized Optimal Transport[‡]

Two-sample testing

- Sinkhorn algorithm: $O(n^2)$ time.
- ► Finite-sample bounds.
- Empirical process theory

$$\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n f(Z_i)-\mathbb{E}[f(Z)]\right|,$$

 ${Z_i}_{i=1}^n$ i.i.d. copies of Z.

[‡]Sinkhorn '67, Cuturi '13, van de Vaart and Wellner '96.

Liu (UW)

Independence Testing with Entropy Regularized Optimal Transport[‡]

Two-sample testing

- Sinkhorn algorithm: $O(n^2)$ time.
- ► Finite-sample bounds.
- Empirical process theory

$$\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n f(Z_i)-\mathbb{E}[f(Z)]\right|,$$

 ${Z_i}_{i=1}^n$ i.i.d. copies of Z.

[‡]Sinkhorn '67, Cuturi '13, van de Vaart and Wellner '96.

Liu (UW)

Independence testing

- Sinkhorn algorithm: $O(n^4)$ time.
- ► No theoretical guarantee.

Independence Testing with Entropy Regularized Optimal Transport§

Two-sample testing

- Sinkhorn algorithm: $O(n^2)$ time.
- ► Finite-sample bounds.
- Empirical process theory

$$\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n f(Z_i)-\mathbb{E}[f(Z)]\right|,$$

 ${Z_i}_{i=1}^n$ i.i.d. copies of Z.

My contribution

- Efficient algorithm: $O(n^2)$ time.
- ► Finite-sample bounds.
- U-process theory

$$\sup_{g\in\mathcal{G}}\left|\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n g(X_i,Y_j)-\mathbb{E}[g(X,Y')]\right|,$$

 $\{(X_i, Y_i)\}_{i=1}^n$ i.i.d. copies of (X, Y).

[§]Sinkhorn '67, Cuturi '13, van de Vaart and Wellner '96, de la Peña and Giné '99.

Liu (UW)

Part II

Part III

Outline

Part I. Non-asymptotics of the minimum Kullback-Leibler divergence estimation.

- A non-asymptotic viewpoint of classical asymptotic theory.
- A finite-sample confidence set adapted to the risk landscape.
- Extension to semi-parametric estimation.

Part II

Part III

Outline

Part I. Non-asymptotics of the minimum Kullback-Leibler divergence estimation.

- ► A non-asymptotic viewpoint of classical asymptotic theory.
- A finite-sample confidence set adapted to the risk landscape.
- Extension to semi-parametric estimation.

Part II. Independence testing with the entropy regularized optimal transport.

- A new independence criterion and the associated test.
- ► Non-asymptotic bounds for the empirical estimator.
- Efficient algorithm for the test statistic.

Part II

Part III

Outline

Part I. Non-asymptotics of the minimum Kullback-Leibler divergence estimation.

- ► A non-asymptotic viewpoint of classical asymptotic theory.
- A finite-sample confidence set adapted to the risk landscape.
- Extension to semi-parametric estimation.

Part II. Independence testing with the entropy regularized optimal transport.

- A new independence criterion and the associated test.
- ► Non-asymptotic bounds for the empirical estimator.
- Efficient algorithm for the test statistic.

Part III. Future directions.

Part I. Non-Asymptotics of the Minimum Kullback-Leibler Divergence Estimation

Carlos Cinelli

Zaid Harchaoui

To be submitted @ AISTATS 2023

@ COLT 2022

Minimum Kullback-Leibler Divergence Estimation

- **Data** $Z_1, \ldots, Z_n \overset{\text{i.i.d.}}{\sim} P$.
- Parametric family $\mathcal{P}_{\Theta} := \{ P_{\theta} : \theta \in \Theta \subset \mathbb{R}^d \}.$
- ► Target parameter

$$\theta_{\star} := \operatorname*{arg\,min}_{\theta \in \Theta} \operatorname{KL}(P \| P_{\theta}) = \operatorname{arg\,min}_{\theta \in \Theta} \Big\{ \mathbb{E}[-\log P_{\theta}(Z)] := \mathbb{E}[\underbrace{\ell(\theta; Z)}_{\operatorname{Loss\,function}}] := \underbrace{L(\theta)}_{\operatorname{Risk}} \Big\}.$$

Maximum likelihood estimator (MLE)

$$\theta_n := \arg\min_{\theta \in \Theta} \left\{ \frac{1}{n} \sum_{i=1}^n \ell(\theta; Z_i) := \underbrace{L_n(\theta)}_{\text{Empirical risk}} \right\}$$

Related Work: Asymptotic Theory[¶]

Well-specified model: $P \in \mathcal{P}_{\Theta}$

$$\sqrt{n}(\theta_n - \theta_\star) \rightarrow_d \mathcal{N}(0, H_\star^{-1}),$$

where $H_{\star} := H(\theta_{\star}) := \nabla^2 L(\theta_{\star})$.

[¶]Cramér '46, Huber '74, Ibragimov and Has'minskii '81, van der Vaart '00.

Related Work: Asymptotic Theory[¶]

Well-specified model: $P \in \mathcal{P}_{\Theta}$

$$\sqrt{n}(\theta_n - \theta_\star) \rightarrow_d \mathcal{N}(0, H_\star^{-1}),$$

where $H_{\star} := H(\theta_{\star}) := \nabla^2 L(\theta_{\star}).$

Mis-specified model: $P \notin \mathcal{P}_{\Theta}$

$$\sqrt{n}(\theta_n - \theta_\star) \rightarrow_d \mathcal{N}(0, H_\star^{-1}G_\star H_\star^{-1}),$$

where $G_{\star} := G(\theta_{\star}) := \mathbb{E}[\nabla \ell(\theta_{\star}; Z) \nabla \ell(\theta_{\star}; Z)^{\top}].$

[¶]Cramér '46, Huber '74, Ibragimov and Has'minskii '81, van der Vaart '00.

Liu (UW)

Related Work: Non-Asymptotic Theory

Specific models

- Gaussian regression (Baraud '04).
- Ridge regression (Hsu et al '14).
- Logistic regression (Bach '10).

Related Work: Non-Asymptotic Theory

Specific models

- Gaussian regression (Baraud '04).
- Ridge regression (Hsu et al '14).
- Logistic regression (Bach '10).

General approaches

- Empirical process (Spokoiny '12).
- Convex optimization (Ostrovskii and Bach '21).

Part

Non-Asymptotic Theory with Strong Convexity

Non-asymptotic theory: with high probability,

P

Non-Asymptotic Theory with Strong Convexity

Non-asymptotic theory: with high probability,

$$\underbrace{\nabla L(\theta_{\star})(\theta_{n}-\theta_{\star})}_{0} + \frac{1}{2}(\theta_{n}-\theta_{\star})^{\top} H(\bar{\theta})(\theta_{n}-\theta_{\star}) = \underbrace{L(\theta_{n})-L(\theta_{\star})}_{\text{Excess risk}} \leq O(n^{-1}).$$

Pai

Part III

Non-Asymptotic Theory with Strong Convexity

Non-asymptotic theory: with high probability,

$$\underbrace{\nabla L(\theta_{\star})(\theta_{n}-\theta_{\star})}_{0} + \frac{1}{2}(\theta_{n}-\theta_{\star})^{\top} H(\bar{\theta})(\theta_{n}-\theta_{\star}) = \underbrace{L(\theta_{n})-L(\theta_{\star})}_{\text{Excess risk}} \leq O(n^{-1}).$$

Strong convexity $H(\theta) \succeq \lambda I$

Self-Concordance $H(\bar{\theta}) \approx H_n(\theta_n)$

$$\lambda \|\theta_n - \theta_\star\|_2^2 \leq O(n^{-1}).$$

 $\|H(\theta)\|^{1/2}(\theta - \theta)\|^{2} < O(n^{-1})$

$$\|H_n(\theta_n)^{1/2}(\theta_n-\theta_\star)\|_2^2 \leq O(n^{-1}).$$

Strong Convexity versus Self-Concordance

Strong convexity

- Globally lower bounded Hessian.
- ► No control on how Hessian varies.

Strong Convexity versus Self-Concordance

Strong convexity

- Globally lower bounded Hessian.
- No control on how Hessian varies.

Self-concordance

- ► No global lower bound.
- Slowly varying Hessian.

Part

Part III

Self-Concordance

Define
$$\mathrm{D}f(x)[u] := \frac{\mathrm{d}}{\mathrm{d}t}f(x+tu)|_{t=0}$$
 and $\mathrm{D}^2f(x)[u,u] := \frac{\mathrm{d}^2}{\mathrm{d}t^2}f(x+tu)|_{t=0}$.

Definition 1 (Nesterov and Nemirovskii '94)

Let f be closed and convex. We say f is *self-concordant* with parameter R > 0 if

 $\left|\mathrm{D}^{3}f(x)[u, u, u]\right| \leq R \left|\mathrm{D}^{2}f(x)[u, u]\right|^{3/2}.$

Part

Part III

Self-Concordance

Define
$$\mathrm{D}f(x)[u] := \frac{\mathrm{d}}{\mathrm{d}t}f(x+tu)|_{t=0}$$
 and $\mathrm{D}^2f(x)[u,u] := \frac{\mathrm{d}^2}{\mathrm{d}t^2}f(x+tu)|_{t=0}$.

Definition 1 (Nesterov and Nemirovskii '94)

Let f be closed and convex. We say f is *self-concordant* with parameter R > 0 if

 $\left|\mathrm{D}^{3}f(x)[u, u, u]\right| \leq R \left|\mathrm{D}^{2}f(x)[u, u]\right|^{3/2}.$

- Newton's method.
- ► Interior point methods.
- Most non-quadratic loss functions are not self-concordant.

Pseudo Self-Concordance

Definition 2 (Bach '10)

Let f be closed and convex. We say f is *pseudo self-concordant* with parameter R > 0 if

 $\left|\mathrm{D}^{3}f(x)[u, u, u]\right| \leq R \|u\|_{2}\mathrm{D}^{2}f(x)[u, u].$

Pseudo Self-Concordance

Definition 2 (Bach '10)

Let *f* be closed and convex. We say *f* is *pseudo self-concordant* with parameter R > 0 if

$$D^{3}f(x)[u, u, u] \le R \|u\|_{2} D^{2}f(x)[u, u].$$

Hessian approximation:

$$e^{-R\|y-x\|_2} \nabla^2 f(x) \preceq \nabla^2 f(y) \preceq e^{R\|y-x\|_2} \nabla^2 f(x).$$

• Localization: $x_* := \arg \min_x f(x)$ satisfies

$$\|x_\star - x\|_{
abla^2 f(x)} \lesssim \|
abla f(x)\|_{
abla^2 f(x)^{-1}}$$

where $\|u\|_A := \sqrt{u^\top A u}$.
Par

Effective Dimension

Effective dimension $d_{\star} := \operatorname{Tr}(H_{\star}^{-1/2}G_{\star}H_{\star}^{-1/2})$

- Well-specified model: $d_{\star} = d$.
- Mis-specified model:
 - \triangleright Problem-specific characterization of the complexity of Θ .
 - ▷ The sandwich covariance is the limiting covariance of $\sqrt{n}H_{\star}^{1/2}(\theta_n \theta_{\star})$.

Part

Effective Dimension

Effective dimension $d_{\star} := \operatorname{Tr}(H_{\star}^{-1/2}G_{\star}H_{\star}^{-1/2})$

- Well-specified model: $d_{\star} = d$.
- ► Mis-specified model:
 - \triangleright Problem-specific characterization of the complexity of Θ .
 - ▷ The sandwich covariance is the limiting covariance of $\sqrt{n}H_{\star}^{1/2}(\theta_n \theta_{\star})$.

		Poly-Poly	Poly-Exp	Exp-Poly	Exp-Exp
Eigendecay	G_{\star} H_{\star}	$i^{-\alpha}$ $i^{-\beta}$	$i^{-\alpha}$ $e^{-\nu i}$	$e^{-\mu i}$ $i^{-\beta}$	$e^{-\mu i}$ $e^{-\nu i}$
Ratio	d_{\star}/d	$d^{(\beta-lpha)\vee(-1)}$	$d^{-lpha}e^{ u d}$	d^{-1}	1 if $\mu = \nu$ d^{-1} if $\mu > \nu$ $d^{-1}e^{(\nu-\mu)d}$ if $\mu < \nu$

Main Results

Theorem 3 (Informal)

Under the pseudo self-concordance assumption and other assumptions, whenever

 $n\gtrsim O(d+d_{\star}),$

with probability at least $1 - \delta$, the MLE θ_n uniquely exists and satisfies

 $\|\theta_n - \theta_\star\|_{H_\star}^2 \lesssim \log(1/\delta) d_\star.$

Main Results

Theorem 3 (Informal)

Under the pseudo self-concordance assumption and other assumptions, whenever

 $n\gtrsim O(d+d_{\star}),$

with probability at least $1 - \delta$, the MLE θ_n uniquely exists and satisfies

 $\|\theta_n - \theta_\star\|_{H_\star}^2 \lesssim \log{(1/\delta)} d_\star.$

- Recall $\sqrt{n}H_{\star}^{1/2}(\theta_n \theta_{\star}) \rightarrow_d \mathcal{N}(0, H_{\star}^{-1/2}G_{\star}H_{\star}^{-1/2}) \Rightarrow n \|\theta_n \theta_{\star}\|_{H_{\star}}^2 \approx d_{\star}.$
- Characterize the critical sample size.
- ► Localization: $\|\theta_n \theta_\star\|^2_{H_n(\theta_\star)} \lesssim \|\nabla L_n(\theta_\star)\|^2_{H_n(\theta_\star)^{-1}}$.

Confidence bound

- Approximate H_{\star} by $H_n(\theta_n)$ (Hessian approximation).
- Approximate d_{\star} by $d_n := \operatorname{Tr}(H_n(\theta_n)^{-1/2}G_n(\theta_n)H_n(\theta_n)^{-1/2}).$

Theorem 4 (Informal)

Under the pseudo self-concordance assumption and other assumptions, whenever

 $n \gtrsim O(d \log n + d_{\star}),$

with probability at least $1 - \delta$, the MLE θ_n uniquely exists and satisfies

 $\|\theta_n - \theta_\star\|_{H_n(\theta_n)}^2 \lesssim \log(1/\delta) d_n.$

Part

Semi-Parametric Estimation

- Nuisance parameter $g_0 \in (\mathcal{G}, \|\cdot\|_{\mathcal{G}})$.
- Population risk $L(\theta, g) := \mathbb{E}[\ell(\theta, g; Z)].$
- ► Two-step learning procedure based on sample-splitting
 - \triangleright Obtain a nonparametric estimator \hat{g} on one sub-sample.
 - \triangleright Estimate θ_{\star} via empirical risk minimization on another sub-sample:

$$heta_n = rgmin_{ heta\in\Theta} L_n(heta, \hat{g}).$$

Example 5 (Robinson '88)

Let Y outcome, D treatment, and X control. Consider

$$Y = D\theta_{\star} + g_0(X) + U.$$

[®]Chernozhukov et al '18, Foster and Syrgkanis '20, Chaudhuri et al '07.

Liu (UW)

Semi-Parametric Estimation

Theorem 6 (Informal)

Under the **pseudo self-concordance** and other assumptions, with probability at least $1 - \delta$,

$$\| heta_n- heta_\star\|^2_{H_\star}\lesssim rac{d_\star}{n}\log\left(1/\delta
ight)+\|\hat{g}-g_0\|^2_{\mathcal{G}}\,.$$

- If g_0 is *p*-smooth, it can be estimated at rate $O(n^{-p/(2p+d)})$.
- The term $\|\hat{g} g_0\|_{\mathcal{G}}^2$ cannot achieve the $O(n^{-1})$ rate.

Semi-Parametric Estimation

Neyman orthogonality (Neyman '79)

 $D_g \nabla_{\theta} L(\theta_{\star}, g_0)[g - g_0] = 0.$

Theorem 7 (Informal)

Under the **pseudo self-concordance**, Neyman orthogonality, and other assumptions, with probability at least $1 - \delta$,

$$\| heta_n- heta_\star\|_{H_\star}^2\lesssim rac{d_\star}{n}\log\left(1/\delta
ight)+\|\hat{g}-g_0\|_\mathcal{G}^4\,.$$

- If g_0 is *p*-smooth, it can be estimated at rate $O(n^{-p/(2p+d)})$.
- The term $\|\hat{g} g_0\|_{\mathcal{G}}^4$ can achieve the $O(n^{-1})$ rate as long as $p \ge d/2$.

Part II. Independence Testing with Entropy Regularized Optimal Transport

Soumik Pal

Zaid Harchaoui

@ AISTATS 2022 (Oral)

Independence Testing

Problem:

- Let $(X, Y) \sim \mu_{XY}$ on $\mathcal{X} \times \mathcal{Y}$ with marginals μ_X and μ_Y .
- Let $\{(X_i, Y_i)\}_{i=1}^n$ be i.i.d. copies of (X, Y).

 \mathbf{H}_0 : *X* and *Y* are independent $\leftrightarrow \mathbf{H}_1$: *X* and *Y* are dependent.

Strategy:

- Define an independence criterion T(X, Y) such that
 ▷ T(X, Y) ≥ 0,
 ▷ T(X, Y) = 0 iff X and Y are independent.
- Estimate the criterion from data $T_n(X, Y)$.
- Choose a critical value $t_n(\alpha)$ and reject \mathbf{H}_0 if $T_n(X, Y) > t_n(\alpha)$.

Introduction	Part I	Part II	Part III
Related Work			

Independence criteria:

- Classical independence criterion (Hoeffding '48, Kruskal '58, Lehmann '66)
 - ▷ Pearson's correlation coefficient.
 - \triangleright Spearman's ρ .
 - $\triangleright\,$ Kendall's $\tau.$

Introduction	Part I	Part II	Part III
Related Work			

Independence criteria:

- Classical independence criterion (Hoeffding '48, Kruskal '58, Lehmann '66)
 - ▷ Pearson's correlation coefficient.
 - \triangleright Spearman's ρ .
 - \triangleright Kendall's τ .
- Distance-based independence criterion.
 - ▷ Distance covariance (dCov) (Székely et al. '07).
 - ▷ Hilbert-Schmidt independence criterion (HSIC) (Gretton et al. '05).

Introduction	Part I	Part II	Part III
Related Work			

Independence criteria:

- Classical independence criterion (Hoeffding '48, Kruskal '58, Lehmann '66)
 - ▷ Pearson's correlation coefficient.
 - \triangleright Spearman's ρ .
 - $\triangleright \ \, {\rm Kendall's} \ \tau.$
- ► Distance-based independence criterion.
 - ▷ Distance covariance (dCov) (Székely et al. '07).
 - ▷ Hilbert-Schmidt independence criterion (HSIC) (Gretton et al. '05).
- Optimal transport based independence criterion.
 - ▷ Wasserstein correlation coefficient (Wiesel '21, Mordant and Segers '21, Nies et al. '21).
 - ▷ Rank-based independence criterion (Shi et al. '20, Deb & Sen '21).

Entropy Regularized Optimal Transport Independence Criterion

ETIC—define T(X, Y) by

 $\bar{S}_{\varepsilon}(\mu_{XY},\mu_X\otimes\mu_Y):=S_{\varepsilon}(\mu_{XY},\mu_X\otimes\mu_Y)-S_{\varepsilon}(\mu_{XY},\mu_{XY})/2-S_{\varepsilon}(\mu_X\otimes\mu_Y,\mu_X\otimes\mu_Y)/2.$

Entropy Regularized Optimal Transport Independence Criterion

ETIC—define T(X, Y) by

 $\bar{S}_{\varepsilon}(\mu_{XY},\mu_X\otimes\mu_Y):=S_{\varepsilon}(\mu_{XY},\mu_X\otimes\mu_Y)-S_{\varepsilon}(\mu_{XY},\mu_{XY})/2-S_{\varepsilon}(\mu_X\otimes\mu_Y,\mu_X\otimes\mu_Y)/2.$

Statistical Properties of ETIC

- Test statistic $T_n(X, Y) := \overline{S}_{\varepsilon}(\hat{\mu}_{XY}, \hat{\mu}_X \otimes \hat{\mu}_Y).$
- Absolute error $|T_n(X, Y) T(X, Y)|$.
- Upper bound via duality

$$\underbrace{\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i, Y_i) - \mathbb{E}[f(X, Y)] \right|}_{\text{Empirical process theory}} + \underbrace{\sup_{f \in \mathcal{F}} \left| \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} f(X_i, Y_j) - \mathbb{E}[f(X, Y')] \right|}_{\text{U-process theory}},$$

where ${\mathcal F}$ is some smooth function class.

Statistical Properties of ETIC

Theorem 8

Assume that μ_X and μ_Y are supported on a bounded domain with radius R. Then we have, with probability at least $1 - \delta$,

$$|T_n(X,Y) - T(X,Y)| \leq C_d \left(\varepsilon + rac{R^{5d+16}}{arepsilon^{5d/2+7}} \sqrt{\log rac{6}{\delta}}
ight) rac{1}{\sqrt{n}}.$$

Statistical Properties of ETIC

Theorem <u>8</u>

Assume that μ_X and μ_Y are supported on a bounded domain with radius R. Then we have, with probability at least $1 - \delta$,

$$|T_n(X,Y) - T(X,Y)| \leq C_d \left(\varepsilon + \frac{R^{5d+16}}{\varepsilon^{5d/2+7}} \sqrt{\log \frac{6}{\delta}} \right) \frac{1}{\sqrt{n}}$$

Remark 1

- Rate of convergence $O(n^{-1/2})$.
- The choice of $\varepsilon = R^2$ gives $C_d \sqrt{\log(6/\delta)} R^2 / \sqrt{n}$.

Statistical Properties of ETIC

Theorem 8

Assume that μ_X and μ_Y are supported on a bounded domain with radius R. Then we have, with probability at least $1 - \delta$,

$$|T_n(X,Y) - T(X,Y)| \leq C_d \left(\varepsilon + \frac{R^{5d+16}}{\varepsilon^{5d/2+7}} \sqrt{\log \frac{6}{\delta}} \right) \frac{1}{\sqrt{n}}$$

Remark 2

The power of the ETIC test is asymptotically one.

- Under \mathbf{H}_0 , T(X, Y) = 0 and thus the critical value $t_n(\alpha)$ should be of order $O(n^{-1/2})$.
- Under H_1 , T(X, Y) > 0 and thus $T_n(X, Y)$ will alway exceed $t_n(\alpha)$ as $n \to \infty$.

Computational Aspects of ETIC

The information projection formulation

 $\min_{\gamma\in \operatorname{CP}(\hat{\mu}_{XY},\hat{\mu}_X\otimes\hat{\mu}_Y)}\operatorname{KL}(\gamma \| R_{\varepsilon}).$

- $\operatorname{CP}(\hat{\mu}_{XY}, \hat{\mu}_X \otimes \hat{\mu}_Y) = \mathcal{M}^1_{\hat{\mu}_{XY}} \cap \mathcal{M}^2_{\hat{\mu}_X \otimes \hat{\mu}_Y}.$
- $\mathcal{M}^1_{\hat{\mu}_{XY}} := \{\gamma : \text{the first marginal is } \hat{\mu}_{XY}\}.$
- $M_{\hat{\mu}_X \otimes \hat{\mu}_Y}^{\mu_{XY}} := \{ \gamma : \text{the second marginal is } \hat{\mu}_X \otimes \hat{\mu}_Y \}.$

Computational Aspects of ETIC

The information projection formulation

 $\min_{\gamma \in \operatorname{CP}(\hat{\mu}_{XY}, \hat{\mu}_X \otimes \hat{\mu}_Y)} \operatorname{KL}(\gamma \| R_{\varepsilon}).$

- CP(µ̂_{XY}, µ̂_X ⊗ µ̂_Y) = M¹_{µ̂_{XY}} ∩ M²<sub>µ̂_X⊗µ̂_Y.
 Deming and Stephan '40.
 </sub>
- Sinkhorn '64. ►

Computational Aspects of ETIC

The information projection formulation

 $\min_{\gamma\in \operatorname{CP}(\hat{\mu}_{XY},\hat{\mu}_X\otimes\hat{\mu}_Y)}\operatorname{KL}(\gamma \| R_{\varepsilon}).$

- $\operatorname{CP}(\hat{\mu}_{XY}, \hat{\mu}_X \otimes \hat{\mu}_Y) = \mathcal{M}^1_{\hat{\mu}_{XY}} \cap \mathcal{M}^2_{\hat{\mu}_X \otimes \hat{\mu}_Y}.$
- Sinkhorn algorithm: $O(n^4)$ time and $O(n^4)$ space.
- **Our algorithm**: $O(n^2)$ time and O(n) space.

Independence Testing on Bilingual Text

Bilingual text

- ► Parallel European Parliament corpus (Koehn '05).
- Randomly select n = 64 English documents and a paragraph in each document.
- (English paragraph, random paragraph in the same document in French).
- ► Feature embeddings of dimension 768 with LaBSE (Feng et al. '20).

Part II

Independence Testing on Bilingual Text

Bilingual text

- ► Parallel European Parliament corpus (Koehn '05).
- Randomly select n = 64 English documents and a paragraph in each document.
- (English paragraph, random paragraph in the same document in French).
- ► Feature embeddings of dimension 768 with LaBSE (Feng et al. '20).

Independence tests

- HSIC with Gaussian kernels.
- ► ETIC with the weighted quadratic cost and same parameters.
- Hyper-parameters: $r_1, r_2 \in [0.25, 4]$.

Part II

Independence Testing on Bilingual Text

ETIC outperforms HSIC for many values of r_1 and r_2 .

Part III. Future Directions

Higher Order Orthogonality in Semi-Parametric Estimation

- Partially linear model (PLM) with non-Gaussian residual.
 - ▷ The two-stage estimator has large bias.
 - Need more robustness!

Higher Order Orthogonality in Semi-Parametric Estimation

- Partially linear model (PLM) with non-Gaussian residual.
 - ▷ The two-stage estimator has large bias.
 - Need more robustness!
- *k*-orthogonality (Mackey et al '18)

$$\mathrm{D}_g^t
abla_ heta \mathcal{L}(heta_\star, g_0)[\underbrace{g-g_0, \ldots, g-g_0}_t] = 0, \quad orall t \leq k.$$

- **Robustness**: g_0 only needs to be estimated at rate $O(n^{-1/(2k+2)})$.
- **Feasibility**: we can construct a 2-orthogonal risk for the PLM with non-Gaussian residual.

Entropy regularized optimal transport

 $\underset{\gamma \in CP(P,Q)}{\operatorname{arg\,min}} \operatorname{KL}(\gamma \| R_{\varepsilon}),$

where $CP(P, Q) = M_P^1 \cap M_Q^2$.

Entropy regularized optimal transport

 $\underset{\gamma \in CP(\hat{P}, \hat{Q})}{\arg \min} \operatorname{KL}(\gamma \| R_{\varepsilon}),$

where \hat{P} and \hat{Q} are estimated from data.

Iterative proportional fitting (raking)

 $\underset{\gamma \in \operatorname{CP}(P,Q)}{\operatorname{arg\,min}}\operatorname{KL}(\gamma \| \hat{R}),$

where *P* and *Q* are known, and \hat{R} is estimated from data.

Alternating conditional expectations

$$f(X, Y) - rgmin_{h(X,Y)\in(H_1+H_2)^{\perp}} \mathbb{E}[(f(X,Y) - h(X,Y))^2],$$

where $H_1 := \{h_1(X) \in L^2\}$ and $H_2 := \{h_2(Y) \in L^2\}$.

Alternating conditional expectations

$$f(X,Y) - \argmin_{h(X,Y) \in H_1^\perp \cap H_2^\perp} \mathbb{E}[(f(X,Y) - h(X,Y))^2],$$

where $H_1 := \{h_1(X) \in L^2\}$ and $H_2 := \{h_2(Y) \in L^2\}$.

Alternating conditional expectations**

$$f(X_{1:n}, Y_{1:n}) - \underset{h(X_{1:n}, Y_{1:n}) \in H_1^{\perp} \cap H_2^{\perp}}{\arg \min} \mathbb{E}[(f(X_{1:n}, Y_{1:n}) - h(X_{1:n}, Y_{1:n}))^2],$$

where $H_1 := \{\sum_{i=1}^n h_1(X_i) \in L^2\}$ and $H_2 := \{\sum_{i=1}^n h_2(Y_i) \in L^2\}.$

**Harchaoui, Liu, and Pal. Under review, 2022.

Liu (UW)

Thank You

ETIC Properties

ETIC Computation

Schrödinger's Lazy Gas Experiment

Figure: Left: high temperature; Right: low temperature.
The Schrödinger Bridge

SB

The Schrödinger bridge (Föllmer '88, Léonard '12)

• A particle *L* making jumps according to

$$f_{\varepsilon}(y \mid x) \propto \exp\left(-\frac{1}{\varepsilon} \|x - y\|^2\right).$$

- Observe initial and terminal configurations $L_0 \sim P$ and $L_1 \sim Q$.
- What is the most likely joint distribution (or coupling) between L_0 and L_1 ?

$$\begin{array}{c} & & f_{\varepsilon}(y \mid x) \\ & & & \\ P & & & Q \end{array}$$

The Schrödinger Bridge Problem and Entropy-Regularized OT

The Schrödinger bridge (Föllmer '88, Léonard '12)

- Consider a Markov chain with initial distribution *P* and transition probability f_{ε} .
- The joint distribution is

SB

$$R_{\varepsilon}(x,y) := P(x)f_{\varepsilon}(y \mid x).$$

• Conditioned on the initial and terminal configurations being P and Q,

$$\mu_{\text{SB}} := \underset{\gamma \in \mathsf{CP}(P,Q)}{\arg\min} \operatorname{KL}(\gamma \| R_{\varepsilon}). \tag{1}$$

	PLM	OSL	ETIC Properties	ETIC Computation
Partially Linea	ar Model			

Let Y outcome, D treatment, and X control. Consider

 $Y = D\theta_0 + \alpha_0(X) + U$ $D = \beta_0(X) + V.$

► Partialling out the effect of *X*

$$Y = (D - \beta_0(X))\theta_0 + \gamma_0(X) + U$$

- Reparameterization $g_0 = (\beta_0, \gamma_0)$.
- Neyman orthogonal risk

$$L(\theta,g) := \mathbb{E}\left[(Y - \gamma(X) - (D - \beta(X))\theta)^2 \right].$$

Proof Sketch for the OSL Estimation Bound

By Taylor's theorem,

$$\begin{split} 0 &\geq L_n(\theta_n, \hat{g}) - L_n(\theta_\star, \hat{g}) \\ &= \nabla_{\theta} L_n(\theta_\star, \hat{g})^\top (\theta_n - \theta_\star) + \|\theta_n - \theta_\star\|^2_{H_n(\bar{\theta}, \hat{g})}/2 \\ &= [\nabla_{\theta} L_n(\theta_\star, \hat{g}) - \nabla_{\theta} L(\theta_\star, \hat{g})]^\top (\theta_n - \theta_\star) + \nabla_{\theta} L(\theta_\star, \hat{g})^\top (\theta_n - \theta_\star) + \|\theta_n - \theta_\star\|^2_{H_n(\bar{\theta}, \hat{g})}/2 \\ &\geq \|\nabla_{\theta} L_n(\theta_\star, \hat{g}) - \nabla_{\theta} L(\theta_\star, \hat{g})\|_{H_{\star}^{-1}} \|\theta_n - \theta_\star\|_{H_{\star}} + \nabla_{\theta} L(\theta_\star, \hat{g})^\top (\theta_n - \theta_\star) + \|\theta_n - \theta_\star\|^2_{H_n(\bar{\theta}, \hat{g})}/2 \\ &\gtrsim - \left[\sqrt{d_\star/n} + \|\hat{g} - g_0\|^2_{\mathcal{G}}\right] \|\theta_n - \theta_\star\|_{H_{\star}} + \|\theta_n - \theta_\star\|^2_{H_{\star}}. \end{split}$$

Properties of ETIC

Proposition 1 (Informal)

Let \mathcal{X} and \mathcal{Y} be compact equipped with Lipschitz costs c_1 and c_2 . Assume that $k_i := \exp(-c_i/\varepsilon)$ are universal for i = 1, 2. Then ETIC with $c := c_1 \oplus c_2$ is a valid independence criterion.

Proposition 2 (Informal)

Let $p = \Omega(\log n/\tau^2)$ be the number of **random features**. Then the random feature approximation of ETIC is of accurate with error at most τ .

SB PLM OSL ETIC Properties ETIC Computation Properties of ETIC

Hilbert-Schmidt independence criterion (HSIC)

• Two kernels k and l.

$$HSIC(X, Y) = \mathbb{E}[k(X_1, X_2)l(Y_1, Y_2)] + \mathbb{E}[k(X_1, X_2)l(Y_3, Y_4)] - \frac{1}{2}\mathbb{E}[k(X_1, X_2)l(Y_1, Y_3)]$$

Proposition 3 (Informal)

Under appropriate assumptions, we have

$$T_{\varepsilon}(X,Y) \to \begin{cases} 0 & \text{if } c = c_1 \oplus c_2 \\ -\frac{1}{2} HSIC_{c_1,c_2}(X,Y) & \text{if } c = c_1 \otimes c_2, \end{cases} \quad as \ \varepsilon \to \infty$$

and

$$T_{\varepsilon}(X,Y) \to OT(\mu_{XY},\mu_X \otimes \mu_Y), \quad as \ \varepsilon \to 0.$$

Sinkhorn

- ▶ Inputs: $a, b \in \mathbb{R}^{n^2}$ and $K \in \mathbb{R}^{n^2 \times n^2}$.
- ▶ Initialization: $u, v \in \mathbb{R}^{n^2}$.
- ► Update:

$$u \leftarrow a \oslash Kv$$
$$v \leftarrow b \oslash K^\top u.$$

• Time $O(n^4)$ and space $O(n^4)$.

Tensor Sinkhorn

- ▶ Inputs: $A, B, K_1, K_2 \in \mathbb{R}^{n \times n}$.
- ▶ Initialization: $U, V \in \mathbb{R}^{n \times n}$.
- ► Update:

$$U \leftarrow A \oslash (K_1 V K_2^{\top})$$
$$V \leftarrow B \oslash (K_1^{\top} U K_2).$$

• Time $O(n^3)$ and space $O(n^2)$.

PLM	O	S

Algorithm	Strategy	Basic operation	Time	Space
Sinkhorn	Alternative projection	Kv	$O(n^4)$	$O(n^4)$
Tensor Sinkhorn (TS)	$K = K_1 \otimes K_2$	$K_1 V K_2^{ op}$	$O(n^3)$	$O(n^2)$

PLM	OS

Algorithm	Strategy	Basic operation	Time	Space
Sinkhorn	Alternative projection	Kv	$O(n^4)$	$O(n^4)$
Tensor Sinkhorn (TS)	$K = K_1 \otimes K_2$	$K_1 V K_2^{ op}$	$O(n^3)$	$O(n^2)$
TS + Random Features (TS-RF)	$K_i pprox \xi_i \xi_i^ op$	$\xi_1\xi_1^\top V\xi_2\xi_2^\top$	$O(pn^2)$	$O(n^2)$

PLM	03

Algorithm	Strategy	Basic operation	Time	Space
Sinkhorn	Alternative projection	Kv	$O(n^4)$	$O(n^4)$
Tensor Sinkhorn (TS)	$K = K_1 \otimes K_2$	$K_1 V K_2^{ op}$	$O(n^3)$	$O(n^2)$
TS + Random Features (TS-RF)	$K_i pprox \xi_i \xi_i^ op$	$\xi_1\xi_1^\top V\xi_2\xi_2^\top$	$O(pn^2)$	$O(n^2)$
Large scale TS-RF (LS-RF)	Symbolic matrices	$\xi_1\xi_1^\top V\xi_2\xi_2^\top$	$O(pn^2)$	O(pn)

SB PLM OSL ETIC Properties ETIC Computation Computational Aspects of ETIC

The large-scale implementation is efficient in both time and memory.

