Probability Metrics for Statistical Learning and Inference: Limit Laws and Non-Asymptotic Bounds

Lang Liu

University of Washington

December 1, 2021

Committee: Zaid Harchaoui (Chair), Soumik Pal (Co-Chair) Thomas Richardson, Kevin Jamieson, Hanna Hajishirzi (GSR) Part I

Part IV

Motivating Examples—Two-Sample Problem

Real images

How similar are the generated images and real images?

Generated images

Is there a distribution shift as Tay interacts with users?

2*

@NYCitizen07 I full hate feminists and they should all die and burn in hell. 24/03/2016, 11:41

@mayank_jee can i just say that im stoked to meet u? humans are super cool

2.

@brightonus33 Hitler was right I hate the jews. 24/03/2016, 11:45 Pai

Motivating Examples-Generative Adversarial Networks

Introduction	Part I	Part II	Part III	Part IV
Probability Metri	cs			

Information divergence

► Kullback-Leibler (KL) divergence

$$\operatorname{KL}(P||Q) := \int \log \frac{\mathrm{d}P}{\mathrm{d}Q} \mathrm{d}P.$$

► *f*-divergence

$$D_f(P||Q) := \int f\left(\frac{\mathrm{d}P}{\mathrm{d}Q}\right) \mathrm{d}Q.$$

▷ $f(t) = t \log t \longrightarrow \text{KL}$ divergence. ▷ $f(t) = \frac{1}{2} |t - 1| \longrightarrow \text{total variation}$ distance.
 Introduction
 Part I
 Part II
 Part III
 Part IV

 Probability Metrics

Information divergence

► Kullback-Leibler (KL) divergence

$$\operatorname{KL}(P||Q) := \int \log \frac{\mathrm{d}P}{\mathrm{d}Q} \mathrm{d}P.$$

► *f*-divergence

$$D_f(P \| Q) := \int f\left(\frac{\mathrm{d}P}{\mathrm{d}Q}\right) \mathrm{d}Q.$$

▷ $f(t) = t \log t \longrightarrow \text{KL}$ divergence. ▷ $f(t) = \frac{1}{2} |t - 1| \longrightarrow \text{total variation}$ distance.

Optimal transport distance

$$C_{\mathrm{OT}}(P,Q) := \inf_{\gamma \in \mathrm{CP}(P,Q)} \int c(x,y) \mathrm{d}\gamma(x,y).$$

• $c \ge 0$ cost and CP(P, Q) couplings.

$$\bullet \ c(x,y) = \|x-y\|^p \longrightarrow W^p_p(P,Q).$$

Introduction	Part I	Part II	Part III	Part IV
Outline				

- Review the *Schrödinger bridge* problem.
- Establish consistency and limiting distributions for the *discrete Schrödinger bridge*.

Introduction	Part I	Part II	Part III	Part IV
Outline				

- Review the *Schrödinger bridge* problem.
- Establish consistency and limiting distributions for the *discrete Schrödinger bridge*.

Part II. The Sample Complexity of Statistical Evaluation for Generative Models.

- ► Review *divergence frontiers*.
- Establish non-asymptotic bounds for the empirical estimator.

Introduction	Part I	Part II	Part III	Part IV
Outline				

- Review the *Schrödinger bridge* problem.
- Establish consistency and limiting distributions for the *discrete Schrödinger bridge*.

Part II. The Sample Complexity of Statistical Evaluation for Generative Models.

- Review *divergence frontiers*.
- Establish non-asymptotic bounds for the empirical estimator.

Part III. Score-Based Change Detection for Gradient-Based Learning Machines.

Introduction	Part I	Part II	Part III	Part IV
Outline				

- Review the *Schrödinger bridge* problem.
- Establish consistency and limiting distributions for the *discrete Schrödinger bridge*.

Part II. The Sample Complexity of Statistical Evaluation for Generative Models.

- Review *divergence frontiers*.
- Establish non-asymptotic bounds for the empirical estimator.

Part III. Score-Based Change Detection for Gradient-Based Learning Machines.

Part IV. Next Steps.

Zaid Harchaoui

Soumik Pal

@ OTML-NeurIPS 2021 (Oral)

Introduction Part II Part II Part III Part IV

Optimal Transport Distance

- *c* nonnegative cost function such that c(x, y) = 0 iff x = y.
- CP(P, Q) the set of couplings (joint distributions) with marginals P and Q.

$$C_{\mathrm{OT}}(P,Q) := \inf_{\gamma \in \mathsf{CP}(P,Q)} \int c(x,y) \mathrm{d}\gamma(x,y).$$

Introduction Part I Part II Part II Part II Part IV Empirical Optimal Transport

- ${X_i}_{i=1}^n$ and ${Y_i}_{i=1}^n$ two i.i.d. samples from *P* and *Q*.
- $P_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ and $Q_n := \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$ empirical distributions.

$$\hat{C}_{\mathrm{OT}}(P_n, Q_n) := \min_{\gamma \in \mathrm{CP}(P_n, Q_n)} \int c(x, y) \mathrm{d}\gamma(x, y).$$

• \hat{C}_{OT} converges to C_{OT} (Dudley '69, Sommerfeld & Munk '18, del Barrio & Loubes '19, etc.)

Introduction Part I Part II Part II Part II Part II Part IV
Empirical Optimal Transport

- ${X_i}_{i=1}^n$ and ${Y_i}_{i=1}^n$ two i.i.d. samples from *P* and *Q*.
- $P_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ and $Q_n := \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$ empirical distributions.

$$\hat{C}_{\mathrm{OT}}(P_n, Q_n) := \min_{\gamma \in \mathrm{CP}(P_n, Q_n)} \int c(x, y) \mathrm{d}\gamma(x, y).$$

• \hat{C}_{OT} converges to C_{OT} (Dudley '69, Sommerfeld & Munk '18, del Barrio & Loubes '19, etc.)

Two challenges:

- The curse of dimensionality $\mathbb{E} \left| \hat{C}_{\text{OT}} C_{\text{OT}} \right| = O(n^{-1/d}).$
- Computational complexity $O(n^3)$.

 Introduction
 Part I
 Part II
 Part III
 Part IV

 The Schrödinger Bridge Problem and Entropy-Regularized OT

The Schrödinger bridge problem (Schrödinger '32, Föllmer '88, Léonard '12)

► Assume *P* and *Q* are densities,

$$\mu_{\mathrm{SB}} := \underset{\gamma \in \mathrm{CP}(P,Q)}{\operatorname{arg\,min}} \left[\int c(x,y) \mathrm{d}\gamma(x,y) + \varepsilon H(\gamma) \right],$$

where $H(\gamma) = \int \log \gamma(x, y) d\gamma(x, y)$ if γ has a density and ∞ otherwise.

• Easier to estimate both statistically and computationally.

Part I

Discrete Schrödinger Bridge (DSB)

	Transport plan	Transport cost
Monge map	$\hat{\mu}_{\sigma} := rac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_{\sigma_i})}$	$\hat{C}_{\sigma} := \frac{1}{n} \sum_{i=1}^{n} c(X_i, Y_{\sigma_i})$
Empirical OT	$\hat{\mu}_{ ext{OT}} := \sum_{\sigma} extsf{q}_{ extsf{OT}}(\sigma) \hat{\mu}_{\sigma}$	$\hat{C}_{ ext{OT}} := \sum_{\sigma} extbf{q}_{ ext{OT}}(\sigma) \hat{C}_{\sigma}$
DSB	$\hat{\mu}_{ extsf{SB}} := \sum_{\sigma} oldsymbol{q}_{ extsf{SB}}(\sigma) \hat{\mu}_{\sigma}$	$\hat{C}_{SB} := \sum_\sigma oldsymbol{q_{SB}}(\sigma) \hat{C}_\sigma$

$$q_{ ext{OT}}(\sigma) = egin{cases} 1 & ext{if } \sigma ext{ minimizes } \hat{C}_{\sigma} \ 0 & ext{otherwise} \end{cases}$$

$$m{q_{\mathsf{SB}}}(\sigma) \propto \exp\left(-rac{n}{arepsilon}\hat{C}_{\sigma}
ight)$$

Introduction	Part I	Part II	Part III	Part IV
Main Results				

Let
$$\hat{\mu}_{\text{SB}} := \sum_{\sigma} q_{\text{SB}}(\sigma) \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_{\sigma_i})}$$
 and $\hat{C}_{\text{SB}} := \sum_{\sigma} q_{\text{SB}}(\sigma) \frac{1}{n} \sum_{i=1}^{n} c(X_i, Y_{\sigma_i})$.

Let
$$\hat{\mu}_{\text{SB}} := \sum_{\sigma} q_{\text{SB}}(\sigma) \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_{\sigma_i})}$$
 and $\hat{C}_{\text{SB}} := \sum_{\sigma} q_{\text{SB}}(\sigma) \frac{1}{n} \sum_{i=1}^{n} c(X_i, Y_{\sigma_i})$.

Theorem 1

Take any function $\eta \in L^1(\mu_{SB})$. Suppose $\{(X_i, Y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} \mu_{SB}$ and other assumptions,

$$T_n(\eta) := \int \eta \mathrm{d}\hat{\mu}_{SB} = \sum_{\sigma} q_{SB}(\sigma) \frac{1}{n} \sum_{i=1}^n \eta(X_i, Y_{\sigma_i}) = \int \eta \mathrm{d}\mu_{SB} + \mathcal{L}_n + o_p(n^{-1/2}).$$

Let
$$\hat{\mu}_{\text{SB}} := \sum_{\sigma} q_{\text{SB}}(\sigma) \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_{\sigma_i})}$$
 and $\hat{C}_{\text{SB}} := \sum_{\sigma} q_{\text{SB}}(\sigma) \frac{1}{n} \sum_{i=1}^{n} c(X_i, Y_{\sigma_i})$.

Theorem 1

Take any function $\eta \in L^1(\mu_{SB})$. Suppose $\{(X_i, Y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} \mu_{SB}$ and other assumptions,

$$T_n(\eta) := \int \eta \mathrm{d}\hat{\mu}_{SB} = \sum_{\sigma} q_{SB}(\sigma) \frac{1}{n} \sum_{i=1}^n \eta(X_i, Y_{\sigma_i}) = \int \eta \mathrm{d}\mu_{SB} + \mathcal{L}_n + o_p(n^{-1/2}).$$

•
$$\mathcal{L}_n = O_p(n^{-1/2}) \longrightarrow$$
 weak convergence of $\hat{\mu}_{SB}$.

Let
$$\hat{\mu}_{\text{SB}} := \sum_{\sigma} q_{\text{SB}}(\sigma) \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_{\sigma_i})}$$
 and $\hat{C}_{\text{SB}} := \sum_{\sigma} q_{\text{SB}}(\sigma) \frac{1}{n} \sum_{i=1}^{n} c(X_i, Y_{\sigma_i})$.

Theorem 1

Take any function $\eta \in L^1(\mu_{SB})$. Suppose $\{(X_i, Y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} \mu_{SB}$ and other assumptions,

$$T_n(\eta) := \int \eta \mathrm{d}\hat{\mu}_{SB} = \sum_{\sigma} q_{SB}(\sigma) \frac{1}{n} \sum_{i=1}^n \eta(X_i, Y_{\sigma_i}) = \int \eta \mathrm{d}\mu_{SB} + \mathcal{L}_n + o_p(n^{-1/2}).$$

- $\mathcal{L}_n = O_p(n^{-1/2}) \longrightarrow$ weak convergence of $\hat{\mu}_{SB}$.
- $\sqrt{n}\mathcal{L}_n \simeq Z$ where Z is mean-zero normal \longrightarrow limit law of $\sqrt{n}(\hat{C}_{SB} C_{SB})$.

Let
$$\hat{\mu}_{\text{SB}} := \sum_{\sigma} q_{\text{SB}}(\sigma) \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_{\sigma_i})}$$
 and $\hat{C}_{\text{SB}} := \sum_{\sigma} q_{\text{SB}}(\sigma) \frac{1}{n} \sum_{i=1}^{n} c(X_i, Y_{\sigma_i})$.

Theorem 2

Take any function $\eta \in L^1(\mu_{SB})$. Suppose $\{(X_i, Y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} \mu_{SB}$ and other assumptions,

$$\mathcal{T}_n(\eta) := \int \eta \mathrm{d}\hat{\mu}_{SB} = \sum_{\sigma} q_{SB}(\sigma) \frac{1}{n} \sum_{i=1}^n \eta(X_i, Y_{\sigma_i}) = \int \eta \mathrm{d}\mu_{SB} + \mathcal{L}_n + \mathcal{Q}_n + o_p(n^{-1}).$$

• $\{Z_k\}$ and $\{Z'_k\}$ are independent standard normals.

•
$$nQ_n \approx \sum_{k,l \geq 1} [a_{kl}Z_kZ_l' + b_{kl}(Z_kZ_l - \mathbb{1}\{k = l\}) + c_{kl}(Z_k'Z_l' - \mathbb{1}\{k = l\})]$$

• Limit law of $n(\hat{C}_{SB} - C_{SB} - \mathcal{L}_n)$.

Introduction	Part I	Part II	Part III	Part IV
Previous Work				

Orthogonal decomposition of permutation symmetric statistics (Hoeffding '48)

$$T := T(X_1, ..., X_n) = \theta + \underbrace{\frac{1}{n} \sum_{i=1}^n f_1(X_i)}_{U_1} + \underbrace{\frac{1}{n(n-1)} \sum_{i \neq j} f_2(X_i, X_j)}_{U_2} + \cdots$$

$$\blacktriangleright \mathbb{E}[(T-\theta)^2] = \mathbb{E}[U_1^2] + \mathbb{E}[U_2^2] + \cdots$$

Part II Part II Part III Part IV Part IV Part IV

Orthogonal decomposition of permutation symmetric statistics (Hoeffding '48)

$$T := T(X_1, ..., X_n) = \theta + \underbrace{\frac{1}{n} \sum_{i=1}^n f_1(X_i)}_{U_1} + \underbrace{\frac{1}{n(n-1)} \sum_{i \neq j} f_2(X_i, X_j)}_{U_2} + \cdots$$

•
$$\mathbb{E}[(T-\theta)^2] = \mathbb{E}[U_1^2] + \mathbb{E}[U_2^2] + \cdots$$
.

► For a fixed order *k* (Rubin & Vitale '80),

$$\mathbb{E}[U_k^2] = O(n^{-k})$$
 and $n^{k/2}U_k \to_d$ Gaussian chaos of order k .

Part II Part II Part II Part II Part II Part II Part IV

Orthogonal decomposition of permutation symmetric statistics (Hoeffding '48)

$$T := T(X_1, ..., X_n) = \theta + \underbrace{\frac{1}{n} \sum_{i=1}^n f_1(X_i)}_{U_1} + \underbrace{\frac{1}{n(n-1)} \sum_{i \neq j} f_2(X_i, X_j)}_{U_2} + \cdots$$

- $\mathbb{E}[(T-\theta)^2] = \mathbb{E}[U_1^2] + \mathbb{E}[U_2^2] + \cdots$.
- ► For a fixed order *k* (Rubin & Vitale '80),

$$\mathbb{E}[U_k^2] = O(n^{-k})$$
 and $n^{k/2}U_k \to_d$ Gaussian chaos of order k .

Increasing order statistic (Dynkin & Mandelbaum '83)

$$\sum_{k=0}^{n} n^{k/2} U_k \to_d e^{Z - \frac{1}{2} \mathbb{E}[Z^2]}$$

 Introduction
 Part I
 Part II
 Part II

 Our Work

Orthogonal decomposition of the DSB under paired sample $\{(X_i, Y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mu_{\text{SB}}$.

$$T_n(\eta) = \sum_{k=0}^n U_k,$$

where $U_0 = \int \eta d\mu_{SB}$, $U_1 = \mathcal{L}_n$, $U_2 = \mathcal{Q}_n$. Moreover

$$\mathbb{E}[(T_n(\eta) - U_0 - U_1 - U_2)^2] = O(n^{-3}).$$

Orthogonal decomposition of the DSB under paired sample $\{(X_i, Y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mu_{\text{SB}}$.

$$T_n(\eta) = \sum_{k=0}^n U_k,$$

where $U_0 = \int \eta d\mu_{SB}$, $U_1 = \mathcal{L}_n$, $U_2 = \mathcal{Q}_n$. Moreover

$$\mathbb{E}[(T_n(\eta) - U_0 - U_1 - U_2)^2] = O(n^{-3}).$$

	Order	Weak convergence	L ² convergence
RV '80	Fixed	Yes	Yes
DM '83	Increasing	Yes	No
Our work	Increasing	Yes	Yes

Discrete Entropy-Regularized Optimal Transport

Discrete entropy-regularized optimal transport (EOT) (Cuturi '13, Ferradans et al. '14)

$$\hat{\mu}_{\text{EOT}} = \arg\min_{\gamma \in \text{CP}(P_n, Q_n)} \left[\int c(x, y) d\gamma(x, y) + \varepsilon \text{Ent}(\gamma) \right], \tag{1}$$

where $\text{Ent}(\gamma) := \sum_{i,j=1}^{n} \gamma(X_i, Y_j) \log \gamma(X_i, Y_j)$ (negative Shannon entropy).

Discrete Entropy-Regularized Optimal Transport

Part I

Discrete entropy-regularized optimal transport (EOT) (Cuturi '13, Ferradans et al. '14)

$$\hat{\mu}_{\text{EOT}} = \arg\min_{\gamma \in \text{CP}(P_n, Q_n)} \left[\int c(x, y) d\gamma(x, y) + \varepsilon \text{Ent}(\gamma) \right],$$
(1)

where $\operatorname{Ent}(\gamma) := \sum_{i,j=1}^{n} \gamma(X_i, Y_j) \log \gamma(X_i, Y_j)$ (negative Shannon entropy).

	Consistency		Limit Law		Computation
	Transport cost	Transport plan	First order	Second order	Stable for small $arepsilon$
Sinkhorn	Yes	Unknown	Yes	Unknown	No
DSB	Yes	Yes	Yes	Yes	Yes

Introduction Part I Part II Part II Part II Part IV

Comparison of the Optimal Couplings

- Fix n = 100 and consider P = Exp(2) and Q = Exp(3).
- Visualize the transport map as ε decreases.

DSB discrete EOT

 Introduction
 Part II
 Part II
 Part II
 Part IV

 Simulation Results for Two-Sample Testing

Two-sample testing for $P = \mathcal{N}(0, 1)$ and $Q = \mathcal{N}(\mu, 1)$.

- DSB and discrete EOT with $c(x, y) = ||x y||^2$ and ε .
- Maximum mean discrepancy (Gretton et al. '12) with kernel $k(x, y) = \exp(-\frac{\|x-y\|^2}{\varepsilon})$.

Simulation Results for Two-Sample Testing

Two-sample testing for $P = \mathcal{N}(0, 1)$ and $Q = \mathcal{N}(\mu, 1)$.

- DSB and discrete EOT with $c(x, y) = ||x y||^2$ and ε .
- Maximum mean discrepancy (Gretton et al. '12) with kernel $k(x, y) = \exp(-\frac{||x-y||^2}{\varepsilon})$.

DSB provides a powerful test that is robust to ε .

Introduction

Part I

Part I

Part III

Part IV

Part II. The Sample Complexity of Statistical **Evaluation for Generative Models**

Krishna Pillutla

Sean Welleck

Yejin Choi

Zaid Harchaoui

Sewoong Oh

@ NeurIPS 2021

Part II

Image and Text Generation

High quality but low variety

...the techniques we used when cleaning out my mom's fabric stash last week... Next, you need to get a small, sharp knife. I like to use a small, sharp knife.

Low quality but high variety

...the techniques we used when cleaning out my mom's fabric stash last week... I had a great deal of **décor management** and was able to **stash the excess items away for safekeeping**. Part II

Type I and Type II Costs in Generative Modeling

Type I cost

Type II cost

How to quantify them?

Part II

Type I and Type II Costs in Generative Modeling

Divergence Frontiers for Generative Models

• Divergence frontiers: let $R_{\lambda} := \lambda P + (1 - \lambda)Q$ and

 $\mathcal{F}(P,Q) := \left\{ (\operatorname{KL}(Q \| R_{\lambda}), \operatorname{KL}(P \| R_{\lambda})) : \lambda \in (0,1) \right\}.$

- ► Applications in vision (Sajjadi et al. '18, Kynkäänniemi et al. '19, Djolonga et al. '20).
- ► Applications in natural language processing (Pillutla et al. '21).

Statistical Summary of Divergence Frontiers

• The *linearized cost* (λ -skew Jensen-Shannon divergence)

$$\mathcal{L}_{\lambda}(P,Q) := \lambda \mathrm{KL}(P \| R_{\lambda}) + (1 - \lambda) \mathrm{KL}(Q \| R_{\lambda}).$$

Part II

► Frontier integral—a statistical summary

$$\operatorname{FI}(P,Q) := 2 \int_0^1 \mathcal{L}_{\lambda}(P,Q) \mathrm{d}\lambda.$$

- \triangleright Symmetric *f*-divergence.
- \triangleright Taking values in [0, 1].
- \triangleright The smaller FI is the better the model is.
Estimation Procedure of Divergence Frontiers

Estimation Procedure of Divergence Frontiers

3. How many data are needed to achieve a good accuracy?

Introduction	Part I	Part II	Part III	Part IV
Main Results				

Theorem 3

Assume that P and Q are discrete with $k = \max\{|Supp(P)|, |Supp(Q)|\}$. With probability at least $1 - \delta$,

$$\left|\operatorname{FI}(\hat{P}_n, \hat{Q}_n) - \operatorname{FI}(P, Q)\right| \lesssim \sqrt{\frac{\log 1/\delta}{n}} + \sqrt{\frac{k}{n}} + \frac{k}{n}.$$
 (2)

Main Results

Theorem 4

For arbitrary P and Q and any k > 1, there exists a partition S_k of size k such that

$$\mathbb{E}\left|\mathrm{FI}(\hat{P}_{\mathcal{S}_{k},n},\hat{Q}_{\mathcal{S}_{k},n})-\mathrm{FI}(P,Q)\right| \lesssim \sqrt{\frac{k}{n}}+\frac{k}{n}+\frac{1}{k}.$$
(3)

Optimizing the upper bound suggests $k \propto n^{1/3}$.

Introduction	Part I	Part II	Part III	Part IV
Main Results				

Add-constant estimator:
$$\hat{P}_{n,b}(x) \propto |\{i : X_i = x\}| + b$$
.

Theorem 5

Let $\hat{P}_{S_k,n,b}$ be the add-b estimator of P. Then

$$\mathbb{E}\left|\mathrm{FI}(\hat{P}_{\mathcal{S}_k,n,b},\hat{Q}_{\mathcal{S}_k,n,b})-\mathrm{FI}(P,Q)
ight|\lesssimrac{\sqrt{nk}+bk}{n+bk}+rac{1}{k}.$$

(4)

Introduction Part I Part II Part II Part II Part IV
Experimental Results

Goal: Investigate smoothed distribution estimators on image and text data.

- ► Train a *StyleGAN* (deep generative model) on *CIFAR-10* (image classification).
- ► Train a *GPT-2* (deep language model) on *Wikitext-103* (articles on Wikipedia).

Part II

Experimental Results

Goal: Investigate smoothed distribution estimators on image and text data.

- ► Train a *StyleGAN* (deep generative model) on *CIFAR-10* (image classification).
- Train a *GPT-2* (deep language model) on *Wikitext-103* (articles on Wikipedia). ►

Missing-mass adaptive smoothing improves the estimation accuracy.

Joseph Salmon

Zaid Harchaoui

@ ICASSP 2021

TayTweets TayandYou

@NYCitizen07 I ft hate feminists and they should all die and burn in hell. 24/03/2016, 11:41

Auto-test

- Score function: $S(\theta) := -\nabla_{\theta} \mathsf{KL}(P_{\theta_0} || P_{\theta}).$
- Score statistic: quadratic form of $S_n(\theta)$.

Auto-test

- Score function: $S(\theta) := -\nabla_{\theta} \mathsf{KL}(P_{\theta_0} || P_{\theta}).$
- Score statistic: quadratic form of $S_n(\theta)$.
- Component screening. ►

@mayank jee can i just say that im stoked to meet u? humans are super cool

Auto-test

- Score function: $S(\theta) := -\nabla_{\theta} \mathsf{KL}(P_{\theta_0} || P_{\theta}).$
- Score statistic: quadratic form of $S_n(\theta)$.
- ► Component screening.
- Differentiable programming.

@mayank_jee can i just say that im stoked to meet u? humans are super cool 23/03/2016, 20:32

Introduction	Part I	Part II	Part III	Part IV
Score-Based C	hange Detectio	on with Nuisance	Parameters	

Pre-change $\mathcal{M}_{\theta_0,\eta_0}$ and post-change $\mathcal{M}_{\theta_0+\Delta,\eta_0}$.

- Goodness-of-fit test with finite dimensional nuisance (e.g., Chaudhuri et al. '10).
- Allow infinite dimensional nuisance.

Introduction	Part I	Part II	Part III	Part IV
Score-Based	Change Detection	on with Nuisance	Parameters	

Pre-change $\mathcal{M}_{\theta_0,\eta_0}$ and post-change $\mathcal{M}_{\theta_0+\Delta,\eta_0}$.

- ► Goodness-of-fit test with finite dimensional nuisance (e.g., Chaudhuri et al. '10).
- Allow infinite dimensional nuisance.
- Neyman orthogonal score $S(X, Y; \theta, \eta)$.
- *Double/debiased machine learning estimator* θ_n (Chernozhukov et al. '18):
- Asymptotic guarantees under the null and alternatives.

Part IV. Next Steps

Introduction	Part I	Part II	Part III	Part IV
Next Steps				

- **1.** Theoretical results for DSB under the product measure.
- Prove the limit law in Theorem 1 for $\{(X_i, Y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \rho_0 \otimes \rho_1$.
- Generalize the results in (Dynkin & Mandelbaum '83) to the two-sample case.

Introduction	Part I	Part II	Part III	Part IV
Next Steps				

- **1.** Theoretical results for DSB under the product measure.
- Prove the limit law in Theorem 1 for $\{(X_i, Y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \rho_0 \otimes \rho_1$.
- Generalize the results in (Dynkin & Mandelbaum '83) to the two-sample case.

2. Measuring independence with probability metrics.

- $\mathcal{D}(P_{XY}, P_X \otimes P_Y)$, e.g., mutual information.
- Learning with multi-modal data, e.g., CLIP (Radford et al. '21).

Part IV

Thank You

Appendix

Comparison Between KL Divergence and Wasserstein-2 Distance

Vary $t \in \mathbb{R}_+$.

Appendix

Comparison Between KL Divergence and Wasserstein-2 Distance

Fix t = 1 and vary $r \in (0, 1)$.

Comparison Between KL Divergence and Wasserstein-2 Distance

Let $P = \mathcal{N}_d(\mu_1, \sigma^2 I_d)$ and $Q = \mathcal{N}_d(\mu_2, \sigma^2 I_d)$. We have

$$\text{KL}(P \| Q) = \frac{1}{2\sigma^2} \| \mu_2 - \mu_1 \|^2$$
$$\text{W}_2^2(P, Q) = \| \mu_1 - \mu_2 \|^2 .$$

- If σ is large, KL($P \| Q$) can be arbitrarily small no matter how large $\| \mu_1 \mu_2 \|$ is.
- If σ is small, KL($P \| Q$) can be arbitrarily large no matter how small $\| \mu_1 \mu_2 \|$ is.

Characterization of the Schrödinger Bridge

 \exists functions *a* and *b* (Csiszar '75, Rüschendorf & Thomsen '93) such that

 $\mu_{\rm SB}(x,y) \stackrel{\text{a.s.}}{=} \xi(x,y)P(x)Q(y),$ where $\xi(x,y) := \exp\left(-\frac{1}{\epsilon}(c(x,y) - a(x) - b(y))\right)$, and $\int \xi(x,y)Q(y)dy \stackrel{\text{a.s.}}{=} 1 \quad \text{and} \quad \int \xi(x,y)P(x)dx \stackrel{\text{a.s.}}{=} 1.$

Markov transition kernels.

Discrete Schrödinger Bridge under the Product Measure

We have
$$T_n(h) - \int \eta d\mu_{SB} - \mathcal{L}_n - \mathcal{Q}_n = \frac{U_n}{D_n}$$
, where $\mathbb{E}_{P \otimes Q}[U_n^2] = o(n^{-2})$ and

$$D_n := \frac{1}{n!} \sum_{\sigma \in \operatorname{Perm}} \prod_{i=1}^n \xi(X_i, Y_{\sigma_i}).$$

Theorem 6

Under appropriate assumptions, it holds that

$$D_n \rightarrow_d D \propto \exp\left\{\sum_{k=1}^{\infty} [-a_k(Z_k^2+(Z_k')^2)+b_kZ_kZ_k']
ight\},$$

where $\{Z_k\}$ and $\{Z'_k\}$ are independent standard normals.

Appendix

Score-Based Change Detection with Nuisance Parameters

Let *S* be the Neyman orthogonal score and consider the score statistic

$$R_n(\tau) := \frac{n^2}{\tau(n-\tau)} \hat{S}_{\tau+1:n}^\top \hat{\mathcal{I}}_{1:n}^{-1} \hat{S}_{\tau+1:n},$$

where

$$\hat{S}_{\tau+1:n} := \sum_{i=\tau+1}^n S(X_i, Y_i; \theta_n, \eta_n) \quad \text{and} \quad \hat{\mathcal{I}}_{1:n} := \sum_{i=1}^n S(X_i, Y_i; \theta_n, \eta_n) S(X_i, Y_i; \theta_n, \eta_n)^\top.$$

Theorem 7

For any τ_n such that $\tau_n/n \to \lambda \in (0, 1)$, we have $R_n(\tau_n) \to_d \chi_d^2$ under \mathbf{H}_0 and

$$\frac{1}{n-\tau_n}\hat{S}_{\tau_n+1:n}\to_p C>0 \quad under\,\mathbf{H}_1.$$

Schrödinger's Lazy Gas Experiment

Figure: Left: high temperature; Right: low temperature.

The Schrödinger Bridge Problem and Entropy-Regularized OT

The Schrödinger bridge problem in continuum (Föllmer '88, Léonard '12)

► A particle making jumps according to

$$f_{\varepsilon}(x,y) := rac{1}{Z_{\varepsilon}(x)} \exp\left(-rac{1}{\varepsilon}c(x,y)
ight).$$

- Observe initial and terminal configurations *P* and *Q*.
- ► What is the most likely coupling between *P* and *Q*?

$$\begin{array}{c} & f_{\varepsilon}(x,y) \\ \hline \\ P & Q \end{array}$$

The Schrödinger Bridge Problem and Entropy-Regularized OT

The Schrödinger bridge problem in continuum (Föllmer '88, Léonard '12)

- Consider a Markov chain with initial distribution *P* and transition probability f_{ε} .
- ► The joint distribution is

 $R_{\varepsilon}(x,y) := P(x)f_{\varepsilon}(x,y).$

The Schrödinger Bridge Problem and Entropy-Regularized OT

The Schrödinger bridge problem in continuum (Föllmer '88, Léonard '12)

- Consider a Markov chain with initial distribution *P* and transition probability f_{ε} .
- ► The joint distribution is

$$R_{\varepsilon}(x,y) := P(x)f_{\varepsilon}(x,y).$$

• Conditioned on the initial and terminal configurations being *P* and *Q*,

$$\mu_{\rm SB} := \underset{\gamma \in {\sf CP}(P,Q)}{\arg\min} \operatorname{KL}(\gamma \| R_{\varepsilon}) = \underset{\gamma \in {\sf CP}(P,Q)}{\arg\min} \left[\int c(x,y) d\gamma(x,y) + \varepsilon H(\gamma) \right], \tag{5}$$

where $H(\gamma) = \int \log \gamma(x, y) d\gamma(x, y)$ if γ has a density and ∞ otherwise.

Characterization of the Schrödinger Bridge

 \exists functions *a* and *b* (Csiszar '75, Rüschendorf & Thomsen '93) such that

 $\mu_{\rm SB}(x,y) \stackrel{\text{a.s.}}{=} \xi(x,y)P(x)Q(y),$ where $\xi(x,y) := \exp\left(-\frac{1}{\epsilon}(c(x,y) - a(x) - b(y))\right)$, and $\int \xi(x,y)Q(y)dy \stackrel{\text{a.s.}}{=} 1 \quad \text{and} \quad \int \xi(x,y)P(x)dx \stackrel{\text{a.s.}}{=} 1.$

Markov transition kernels.

First Order Chaos

Conditional probability densities

$$p_{X_1|Y_1}(x \mid y) = \xi(x, y)P(x)$$
 and $p_{Y_1|X_1}(y \mid x) = \xi(x, y)Q(y)$

Markov operators $\mathcal{A} : \mathsf{L}^2(P) \to \mathsf{L}^2(Q)$ and $\mathcal{A}^* : \mathsf{L}^2(Q) \to \mathsf{L}^2(P)$,

$$\mathcal{A}f(y) := \int f(x)\xi(x,y)P(x)dx = \mu_{\mathrm{SB}}[f(X_1) \mid Y_1](y)$$
$$\mathcal{A}^*g(x) := \int g(y)\xi(x,y)Q(y)dy = \mu_{\mathrm{SB}}[g(Y_1) \mid X_1](x).$$

First Order Chaos

First order chaos

$$\mathcal{L}_n := \frac{1}{n} \sum_{i=1}^n [f(X_i) + g(Y_i)],$$

where

$$egin{aligned} &\kappa_{1,0}(X_1) := \mu_{ ext{SB}} \left[\eta(X_1,Y_1) - \int \eta \mathrm{d} \mu_{ ext{SB}} \mid X_1
ight] \ &\kappa_{0,1}(Y_1) := \mu_{ ext{SB}} \left[\eta(X_1,Y_1) - \int \eta \mathrm{d} \mu_{ ext{SB}} \mid Y_1
ight], \end{aligned}$$

and

$$f = (I - \mathcal{A}^* \mathcal{A})^{-1} (\kappa_{1,0} - \mathcal{A}^* \kappa_{0,1})$$

$$g = (I - \mathcal{A} \mathcal{A}^*)^{-1} (\kappa_{0,1} - \mathcal{A} \kappa_{1,0}).$$

Entropic Formulation of the Discrete Schrödinger Bridge

- $\mathcal{P}(\text{Perm})$ probability measures on the set of permutations.
- ▶ $\mathsf{Ent}(q) := \sum_{\sigma \in \mathsf{Perm}} q(\sigma) \log q(\sigma)$ for $q \in \mathcal{P}(\mathsf{Perm})$.

$$q_{\rm SB} = \arg\min_{q\in\mathcal{P}(\rm Perm)} \left[\sum_{\sigma\in\rm Perm} q(\sigma) \frac{1}{n} \sum_{i=1}^{n} c(X_i, Y_{\sigma_i}) + \frac{\varepsilon}{n} \operatorname{Ent}(q) \right].$$
(6)

Gibbs Sampling for the Discrete Schrödinger Bridge

Algorithm 1 Gibbs sampling for the Schrödinger bridge statistic

- 1: Input: samples $\{X_i\}_{i=1}^n$ and $\{Y_i\}_{i=1}^n$, functions c and ξ , burn-in B and number of iterations L.
- 2: Initialization: $\sigma^{(0)} \leftarrow id$.
- 3: for t = 0, ..., L 1 do
- 4: Randomly select $i \neq j \in [n]$.
- 5: Compute $r \leftarrow \exp\left\{\left[c(X_i, Y_{\sigma_i^{(t)}}) + c(X_j, Y_{\sigma_j^{(t)}}) c(X_i, Y_{\sigma_j^{(t)}}) c(X_j, Y_{\sigma_i^{(t)}})\right]/\varepsilon\right\}$.
- 6: Generate $a \sim \text{Bern}(r/(1+r))$.
- 7: **if** a = 1 **then**
- 8: Obtain $\sigma^{(t+1)}$ from $\sigma^{(t)}$ by swapping the entries $\sigma_i^{(t)}$ and $\sigma_j^{(t)}$.
- 9: else
- 10: Set $\sigma^{(t+1)} \leftarrow \sigma^{(t)}$.
- 11: end if
- 12: end for

13: **Output:** $T \leftarrow \frac{1}{L-B} \sum_{t=B+1}^{L} \frac{1}{n} c(X, Y_{\sigma(t)}).$

Examples

Set
$$c(x, y) = ||x - y||^2$$
.

Example 8

Let $P = \mathcal{N}_d(\mu_1, \Sigma_1)$ and $Q = \mathcal{N}_d(\mu_2, \Sigma_2)$, then the cost of the population SCB reads

$$\|\mu_{1} - \mu_{2}\|^{2} + \operatorname{Tr}(\Sigma_{1}) + \operatorname{Tr}(\Sigma_{2}) - 2\operatorname{Tr}\left(\left(\Sigma_{1}^{1/2}\Sigma_{2}\Sigma_{1}^{1/2} + \frac{\varepsilon^{2}}{16}I_{d}\right)^{1/2} - \frac{\varepsilon}{4}I_{d}\right).$$
(7)

Example 9

Let P be a density on \mathbb{R}^d and $Q = P * \mathcal{N}_d(0, \frac{\varepsilon}{2}I_d)$, then the population SCB and its cost read

$$\mu_{\rm SB}(x,y) = P(x) \frac{1}{(\pi \varepsilon)^{d/2}} \exp\left(-\frac{1}{\varepsilon} \|x - y\|^2\right) \quad \text{and} \quad C_{\rm SB} = \frac{\varepsilon d}{2}.$$
 (8)

Convergence of the Transport Cost

Goal: explore the convergence empirically.

• Set
$$c(x, y) = ||x - y||^2$$
 and $\varepsilon = 0.1$.

- Generate **independent** samples $\{X_i\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} P$ and $\{Y_i\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} Q$. (a) $P = \mathcal{N}(0, 1)$ and $Q = \mathcal{N}(0, 1)$. (b) P = Exp(1) and $Q = P * \mathcal{N}(0, 0.5\varepsilon)$. (c) $P = 0.5\mathcal{N}(-1, 0.3) + 0.5\mathcal{N}(1, 0.3)$ and $Q = P * \mathcal{N}(0, 0.5\varepsilon)$.
- Plot $\hat{C}_{SB} := \int c d\hat{\mu}_{SB}$, $\hat{C}_{EOT} := \int c d\hat{\mu}_{EOT}$, and $C_{SB} := \int c d\mu_{SB}$.

Convergence of the Transport Cost

Figure: Cost versus sample size with $\varepsilon = 0.1$.
Convergence of the Transport Cost

Experimental settings.

- Set $c(x, y) = ||x y||^2$, $\varepsilon = 1$, and n = 100.
- ▶ Generate independent samples {X_i}¹⁰⁰ ∼ P and {Y_i}¹⁰⁰ ∼ Q.
 (a) P = N(0, 1) and Q = N(μ, 1).
 (b) P = N(0, 1) and Q = N(0, σ²).
- Plot population cost and relative error $(\hat{C} C)/C$.

Convergence of the Transport Cost

Figure: Cost (left) and relative error (right) versus parameters with $\varepsilon = 1.0$ and n = 100.

Appendix

Measuring the Distance Between Probability Distributions

• Optimal transport distance:

$$C_{\mathrm{OT}}(P,Q) = \inf_{
u \in \mathrm{CP}(P,Q)} \int c(x,y) \mathrm{d}
u(x,y).$$

Appendix

Measuring the Distance Between Probability Distributions

• Optimal transport distance:

$$C_{\mathrm{OT}}(P,Q) = \inf_{
u \in \mathrm{CP}(P,Q)} \int c(x,y) \mathrm{d}
u(x,y).$$

• Transport cost of the Schrödinger bridge:

$$C_{\mathrm{SB}}(P,Q) := \int c(x,y) \mathrm{d} \mu_{\mathrm{SB}}(x,y).$$

Appendix

Measuring the Distance Between Probability Distributions

• Optimal transport distance:

$$C_{\mathrm{OT}}(P,Q) = \inf_{\nu \in \mathrm{CP}(P,Q)} \int c(x,y) \mathrm{d}\nu(x,y).$$

Transport cost of the Schrödinger bridge:

$$C_{\mathrm{SB}}(P,Q) := \int c(x,y) \mathrm{d}\mu_{\mathrm{SB}}(x,y).$$

• Centered cost of the Schrödinger bridge:

$$\bar{C}_{\rm SB}(P,Q) := C_{\rm SB}(P,Q) - \frac{1}{2}C_{\rm SB}(P,P) - \frac{1}{2}C_{\rm SB}(Q,Q).$$

• Maximum mean discrepancy (MMD):

$$\mathsf{MMD}(P,Q) := \mathbb{E}[k(X,X')] + \mathbb{E}[k(Y,Y')] - 2 \mathbb{E}[k(X,Y)].$$

Two Sample Testing

- Generate **independent** samples $\{X_i\}_{i=1}^{50} \stackrel{\text{i.i.d.}}{\sim} P$ and $\{Y_i\}_{i=1}^{50} \stackrel{\text{i.i.d.}}{\sim} Q$. $\triangleright P = \mathcal{N}(0, 1)$ and $Q = \mathcal{N}(\mu, 1)$. $\triangleright P = \mathcal{N}(0, 1)$ and $Q = \mathcal{N}(0, \sigma^2)$.
- Perform two-sample testing using
 - ▷ DSB with $c(x, y) = ||x y||^2$ and ε .
 - ▷ Discrete EOT with $c(x, y) = ||x y||^2$ and ε .
 - ▷ MMD (Gretton et al. '12) with kernel $k(x, y) = \exp(-\|x y\|^2 / \varepsilon)$.

Two-Sample Testing

Figure: Power versus parameter for **Top:** $\mathcal{N}(0, 1)$ v.s. $\mathcal{N}(\mu, 1)$; **Bottom**: $\mathcal{N}(0, 1)$ v.s. $\mathcal{N}(0, \sigma^2)$.

f-Divergence

Let f be convex with f(1) = 0.

$$D_f(P||Q) := \int f\left(\frac{dP(x)}{dQ(x)}\right) dQ(x).$$

Regularity Assumptions

Conjugate generator $f^*(t) = tf(1/t)$.

 $D_{f^*}(P||Q) = D_f(Q||P).$

Assumption. The generator f is twice continuously differentiable with f'(1) = 0. Moreover, (A1) We have $f(0) < \infty$ and $f^*(0) < \infty$.

(A2) There exist constants C_1, C_1^* such that

 $|f'(t)| \le C_1(1 \lor \log(1/t))$ and $|(f^*)'(t)| \le C_1^*(1 \lor \log(1/t)),$ for all $t \in (0, 1).$

(A3) There exist constants C_2, C_2^* such that

$$rac{t}{2}f''(t)\leq C_2 \quad ext{and} \quad rac{t}{2}(f^*)''(t)\leq C_2^*, \quad ext{for all }t\in(0,\infty).$$

Results for the Worst-Case Statistical Error of Divergence Frontiers

Theorem 10

Assume that P and Q are discrete with $k = \max\{|Supp(P)|, |Supp(Q)|\}$. With probability at least $1 - \delta$,

$$\begin{split} \sup_{\lambda \in [\lambda_0, 1-\lambda_0]} \left\| \left(\mathrm{KL}(\hat{P}_n \| \hat{R}_\lambda), \mathrm{KL}(\hat{Q}_n \| \hat{R}_\lambda) \right) - \left(\mathrm{KL}(P \| R_\lambda), \mathrm{KL}(Q \| R_\lambda) \right) \right\|_1 \\ \lesssim \frac{1}{\lambda_0} \left[\sqrt{\frac{\log 1/\delta}{n}} + \sqrt{\frac{k}{n}} + \frac{k}{n} \right], \end{split}$$
for any $\lambda_0 \in (0, 1).$

Experimental Results

- Let N_a be the frequency of *a* and φ_t be the number of symbols appearing *t* times.
- Add-constant estimators $-\hat{P}_b(a) \propto N_a + b$.

Braess-Sauer	Krichevsky-Trofimov	Laplace
$b_a = 1/2$ if a does not appear $b_a = 1$ if a appears once $b_a = 3/4$ if a appears more than once	$b \equiv 1/2$	$b \equiv 1$

► *Good-Turing* estimator:

$$\hat{P}_{ ext{GT}}(a) \propto egin{cases} N_a & ext{if } N_a > arphi_{N_a+1} \ [arphi_{N_a+1}+1](N_a+1)/arphi_{N_a} & ext{otherwise.} \end{cases}$$

Experimental Results

Experiment. Investigate the quantization level *k*.

- (a) N(0, I₂) and N(1, I₂).
 (b) N(0, I₂) and N(0, 5I₂).
 (c) t₄(0, I₂) and t₄(1, I₂).
- (d) $t_4(0, I_2)$ and $t_4(0, 5I_2)$.

Experimental Results

The choice $k \propto n^{1/3}$ suggested by the theory works the best empirically.

Figure: Total error with quantization level $k \propto n^{1/r}$ on 2-dimensional continuous data.