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ABSTRACT

Three classical approaches to goodness-of-fit testing are Rao’s
test, Wald’s test, and the likelihood-ratio test. The asymptotic
equivalence of these three tests under the null hypothesis is
a famous connection in statistical detection theory. We re-
visit these three likelihood-related tests from a non-asymptotic
viewpoint under self-concordance assumptions. We recover
the equivalence of the three tests and characterize the critical
sample size beyond which the equivalence holds asymptoti-
cally. We also investigate their behavior under local alterna-
tives. Along the way, we establish an estimation bound that
matches the misspecified Cramér-Rao lower bound. We illus-
trate the interest of our results using generalized linear models
and score matching with exponential families.

Index Terms— score test, self-concordance, statistical
detection.

1. INTRODUCTION

Likelihood-based statistical inference is at the core of statisti-
cal theory, detection theory, and recent developments on com-
putational and statistical trade-offs in learning theory [3, 7, 8].
Three classical approaches to statistical inference have been
put forward independently, and have been found after their
introduction to share essential connections. Rao’s score test,
Wald’s parameter test, and the likelihood-ratio test have been
known to be equivalent under the null hypothesis of goodness-
of-fit testing under classical large n small d asymptotics. We
mention here, among many of them, the general monographs
[6, 15, 16]; a modern treatment of this equivalence under gen-
eral assumptions is yet hard to find in monographs.

In higher dimensional settings, the non-asymptotic view-
point has been fruitful in tackling estimation and prediction
problems – the results are developed for all fixed n so that
it also captures the asymptotic regime where d grows with
n. Early works in this line of research focus on specific mod-
els such as least-squares regression [4], logistic regression
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[1], and robust M-estimation [20]. The paper [12] addressed
the finite-sample regime in full generality in a spirit similar
to the classical local asymptotic normality theory. The ap-
proach of [12] relies on heavy empirical process machinery
and requires strong global assumptions on the deviation of
the empirical risk process. More recently, the work in [11]
focused on risk bounds, specializing the discussion to linear
models with (pseudo) self-concordant losses and obtained a
more transparent analysis under neater assumptions.

A critical tool arising from this line of research is the
so-called Dikin ellipsoid, a geometric object identified in the
theory of convex optimization [10]. The Dikin ellipsoid cor-
responds to the distance measured by the Euclidean distance
weighted by the Hessian matrix at the optimum. This weighted
Euclidean distance is adapted to the geometry near the target
parameter and thus leads to sharper bounds that do not depend
on the minimum eigenvalue of the Hessian. This important
property has been used fruitfully in various problems of learn-
ing theory and mathematical statistics. We show that the con-
cordance of the Hessians near the optimum with the Hessian
at the optimum has interesting implications for statistical infer-
ence. The aforementioned three tests achieve the same Type I
error under the null hypothesis, and their Type II error under
local alternatives can also be characterized. In fact, under gen-
eralized self-concordance, the empirical Hessian concentrates
around the population Hessian within a Dikin ellipsoid, and
their distance can be precisely controlled.

We first recall in Sec. 2 the three tests, Rao’s score test,
Wald’s parameter test, and the likelihood-ratio test, and their
classical asymptotic equivalence under the null hypothesis.
We then present our main results in Sec. 3—the control of
Type I and Type II errors of the three tests under generalized
self-concordance. We illustrate in Sec. 4 the interest of the
results using generalized linear models and score matching
with exponential families. The proofs, additional discussions,
and a complete bibliography can be found in [9].

2. THE THREE TESTS UNDER CLASSICAL
ASYMPTOTICS

We briefly recall the framework of goodness-of-fit testing. Let
(Z,Z) be a measurable space. Let Z ∈ Z be a random element
following some unknown distribution P. Consider a parametric



family of distributions PΘ := {Pθ : θ ∈ Θ ⊂ Rd} such that
there exists a unique θ⋆ with P = Pθ⋆ . Given an i.i.d. sample
{Zi}ni=1 from the data distribution Pθ⋆ , we are interested in
inferring properties of the parameter θ⋆.

Let Θ0 ⊂ Θ be a subset of parameters. A goodness-of-fit
testing problem is to test the null hypothesis that θ⋆ ∈ Θ0

versus the alternative hypothesis that θ⋆ /∈ Θ0. In this paper,
we focus on a simple null hypothesis where Θ0 := {θ0} is a
singleton. In other words,

H0 : θ⋆ = θ0 ↔ H1 : θ⋆ ̸= θ0.

A statistical test consists of a test statistic T := T (Z1, . . . , Zn)
and a prescribed critical value tn, and we reject the null hy-
pothesis if T > tn. Its performance is quantified by the
type I error rate Pr(T > tn | H0) and statistical power
Pr(T > tn | H1).

Classical goodness-of-fit tests include the Rao (score) test,
the Wald (parameter) test, and the likelihood-ratio test (LRT).
Moreover, the three tests are known – under classical large n
fixed d asymptotics – to be asymptotically equivalent under
the null hypothesis. In the following, we introduce each of
them under standard regularity conditions and give intuition
on their asymptotically equivalence.

Notation. Let ℓ(θ; z) := − logPθ(z) and L(θ) :=
E[− logPθ(Z)]. Following the terminology in statistical
learning theory, we refer to ℓ as the loss function and L as the
population risk. The empirical risk is defined as Ln(θ) :=
1
n

∑n
i=1 ℓ(θ;Zi). We denote by S(θ; z) := ∇θℓ(θ; z) the

gradient of the loss at z and H(θ; z) := ∇2
θℓ(θ; z) the Hes-

sian at z. Their population versions are S(θ) := E[S(θ;Z)]
and H(θ) := E[H(θ;Z)], respectively. We assume stan-
dard regularity assumptions so that S(θ) = ∇θL(θ) and
H(θ) = ∇2

θL(θ). Note that the two optimality condi-
tions then read S(θ⋆) = 0 and H(θ⋆) ≻ 0. Further-
more, we let G(θ; z) := S(θ; z)S(θ; z)⊤ and G(θ) :=
E[S(θ;Z)S(θ;Z)⊤] be the autocorrelation matrices of the
gradient. We define their empirical quantities as Sn(θ) :=
n−1

∑n
i=1 S(θ;Zi), Hn(θ) := n−1

∑n
i=1 H(θ;Zi), and

Gn(θ) := n−1
∑n

i=1 G(θ;Zi). For simplicity of the notation,
we let G⋆ := G(θ⋆) and H⋆ := H(θ⋆).

2.1. The Rao test

To motivate the Rao test, we assume the null hypothesis is true,
that is, θ⋆ = θ0. As a result, it holds that S(θ0) = 0. The Rao
test is based on Sn(θ0)—an empirical estimator of S(θ0). It is
unbiased since E[Sn(θ0)] = S(θ0) = 0. By the central limit
theorem, it holds that

√
nSn(θ0) →d Nd(0, G(θ0)).

Since the model is well-specified, i.e., P ∈ PΘ, it can be shown
that G(θ0) = H(θ0). As a result, G(θ0) can be estimated by
Hn(θ0) and thus, by Slutsky’s lemma,

n ∥Sn(θ0)∥2Hn(θ0)−1 →d χ2
d, under H0, (1)

where ∥u∥2A := u⊤Au for a vector u ∈ Rd and a positive
semidefinite matrix A ∈ Rd×d. The Rao statistic is exactly
TRao := ∥Sn(θ0)∥2Hn(θ0)−1 , and the larger it is the less likely
the null hypothesis is true.

2.2. The Wald test

Let θn := argminθ∈Θ Ln(θ) be (assumed to be unique
and exist) the empirical risk minimizer (or maximum likeli-
hood estimator). The Wald statistic is defined as TWald :=
∥θn − θ0∥2Hn(θn)

, i.e., the squared norm of the difference
θn − θ0 weighted by Hn(θn). It is related to the Rao test via
the Taylor expansion: there exists θ̄n, a convex combination
of θ0 and θn, such that

Sn(θ0) = Sn(θ0)− Sn(θn) = Hn(θ̄n)(θ0 − θn).

Since it is usually true that θn = θ0 + op(1) as n → ∞, we
have

TRao =
∥∥Hn(θ̄n)(θn − θ0)

∥∥2
Hn(θ0)−1

= ∥θn − θ0∥2Hn(θ0)
+ op(1) = TWald + op(1).

Moreover, it can be shown that Hn(θn) →p H(θ0) and
Hn(θ̄n) →p H(θ0), which implies

nTWald = n ∥θn − θ0∥2Hn(θn)
→d χ2

d, under H0. (2)

2.3. The likelihood-ratio test

The LRT statistic is defined as TLR := 2[Ln(θ0) − Ln(θn)].
Since −nLn(θ) is the log-likelihood of the data {Zi}ni=1 un-
der the model Pθ, the LRT statistic can be written as the
log-likelihood ratio of the data under Pθn and the one under
Pθ0 . It is related to the Wald statistic (and thus the Rao statis-
tic) via another Taylor expansion: there exists θ̃n, a convex
combination of θ0 and θn, such that

Ln(θ0)− Ln(θn) =
1

2
∥θn − θ0∥2Hn(θ̃n)

,

where we have used Sn(θn) = 0. Following the argument of
the Wald statistic, we have TLR = TWald + op(1) and

nTLR = 2n[Ln(θ0)− Ln(θn)] →d χ2
d, under H0. (3)

This is known as the Wilks theorem [19].

2.4. Equivalence of the three tests

According to the limiting behavior in (1), (2), and (3), it is clear
that the Rao, Wald, and likelihood-ratio tests are asymptoti-
cally equivalent under the null. However, due to its asymptotic
nature, it is unclear how large n should be in order for the
equivalence to be valid.
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Fig. 1: Dikin ellipsoid and Euclidean ball.

3. MAIN RESULTS

After introducing some notation and definitions in Sec. 3.1, we
present in Sec. 3.2 our main results characterizing the type I
error rate and the power of the Rao, Wald, and LR tests under
generalized self-concordance.

3.1. Preliminaries

Dikin ellipsoid. In our analysis of the Wald test and LRT, the
first step is to localize the estimator to a Dikin ellipsoid at θ⋆
of radius r, i.e.,

Θr(θ⋆) :=
{
θ ∈ Θ : ∥θ − θ⋆∥H⋆

< r
}
.

The key difference between Dikin ellipsoids and Euclidean
balls is that the shape of a Dikin ellipsoid is adapted to the
geometry near the optimum whereas the shape of the Euclidean
ball is always the same no matter which population risk is used.
This is illustrated in Fig. 1.

Generalized self-concordance. We will use the notion of self-
concordance from convex optimization in our analysis. Self-
concordance originated from the analysis of the interior-point
and Newton-type convex optimization methods [10]. Bach [1]
adapted it to statistical models by defining the notion of pseudo
self-concordance, and derived finite-sample generalization
bounds for logistic regression. Recently, Sun and Tran-Dinh
[14] proposed the generalized self-concordance which unifies
self-concordance and pseudo self-concordance. For a func-
tion f : Rd → R, we define Dxf(x)[u] :=

d
dtf(x+ tu)|t=0,

D2
xf(x)[u, v] := Dx(Dxf(x)[u])[v] for x, u, v ∈ Rd, and

D3
xf(x)[u, v, w] similarly.

Definition 1 (Generalized self-concordance). Let X ⊂ Rd be
open and f : X → R be a closed convex function. For R > 0
and ν > 0, we say f is (R, ν)-generalized self-concordant on
X if∣∣D3

xf(x)[u, u, v]
∣∣ ≤ R ∥u∥2∇2f(x) ∥v∥

ν−2
∇2f(x) ∥v∥

3−ν
2

with the convention 0/0 = 0 for the case ν < 2 and ν > 3.
Recall that ∥u∥2∇2f(x) := u⊤∇2f(x)u.

In contrast to strong convexity which imposes a gross
lower bound on the Hessian, generalized self-concordance
specifies the rate at which the Hessian can vary, leading to a
finer control on the Hessian. As we shall see in Sec. 3.2, owing
to the generalized self-concordance, we are able to remove the
direct dependency on λ⋆ := λmin(H⋆) in our bounds.

Concentration of Hessian. One key result towards deriving
our bounds is the concentration of empirical Hessian, i.e., (1−
cn(δ))H(θ) ⪯ Hn(θ) ⪯ (1 + cn(δ))H(θ) with probability at
least 1− δ. When the loss function is of the form ℓ(θ; z) :=
ℓ(y, θ⊤x) (e.g., generalized linear models), the empirical Hes-
sian is of the form of a sample covariance. Assuming X to be
sub-Gaussian, Ostrovskii and Bach [11] obtained a concentra-
tion bound for Hn(θ⋆) with cn(δ) = O(

√
(d+ log (1/δ))/n)

via the concentration bound for sample covariance [17, Thm.
5.39]. For general loss functions, such a special structure
cannot be exploited. We overcame this challenge by the ma-
trix Bernstein inequality [18, Thm. 6.17], obtaining a tighter
concentration bound with cn(δ) := O(

√
log (d/δ)/n).

Model misspecification and effective dimension. Even
though the framework of the goodness-of-fit testing assumes
a well-specified model, our intermediate analysis also holds
under model misspecification, i.e., P /∈ PΘ, assuming that
θ⋆ := argminθ∈Θ L(θ) uniquely exists. Examples include
score matching [5]. Under model misspecification, a quantity
that plays a central role is the effective dimension.

Definition 2. We define the effective dimension to be

d⋆ := Tr(H
−1/2
⋆ G⋆H

−1/2
⋆ ). (4)

The effective dimension appears in non-asymptotic analy-
ses of (penalized) M-estimation recently; see, e.g., [13]. The
quantity provides a characterization of the complexity of the
parameter space Θ which is adapted to both the data distribu-
tion and the loss function. When the model is well-specified, it
can be shown that H⋆ = G⋆ and thus d⋆ = d. When the model
is misspecified, d⋆ can be much smaller than d depending on
the spectra of H⋆ and G⋆. To illustrate this, we can compare d⋆
with d under different regimes of eigendecay; see [9, Tab. 3].

3.2. The three tests in the non-asymptotic setting

We now give simplified versions of our main theorems. We
use C to represent a constant that does not directly depend
on n, d,R, λ⋆ and may change from line to line. We use ≲
and ≳ to hide such constants. The precise versions, including
assumptions, can be found in [9]. Recall that λ⋆ := λmin(H⋆).

Theorem 1 (Type I error rate). Under H0, we have, with
probability at least 1− δ,

TRao ≲
d

n
+

1

n
log

e

δ



whenever n ≳ log (2d/δ). Additionally,

TLR, TWald ≲
d

n
+

1

n
log

e

δ

whenever

n ≳ log
2d

δ
+ d⋆

R2

λ3−ν
⋆

(
log

2nd

δ

)ν−2

log
e

δ
. (5)

This result shows, from a non-asymptotic viewpoint, that
the three test statistics have a tail behavior that is governed by a
χ2
d distribution. We also characterize the critical sample size in

(5) enough to enter the asymptotic regime. In terms of power,
let us look at their tail behavior under local alternatives when
θ⋆ → θ0 as n → ∞. Let Ω(θ) := G(θ)1/2H(θ)−1G(θ)1/2

and h(τ) := min{τ2, τ}.

Theorem 2 (Statistical power). Let θ⋆ ̸= θ0 that may depend
on n. The following statements are true for sufficiently large
n.

(a) If ∥θ⋆ − θ0∥H(θ0)
= O(n−1/2), we have

Pr(TRao > tn(α)) ≤ 2de−Cn + e−Ch(∥Ω(θ0)∥−1
2 ).

If ∥θ∗ − θ0∥H(θ0)
= ω(n−1/2), we have

Pr(TRao > tn(α)) ≥ 1− 2de−Cn − e
−Ch

(
nτ̄n

∥Ω(θ0)∥2

)
,

where τ̄n ≍ ∥θ⋆ − θ0∥2H(θ0)
.

(b) If ∥θ⋆ − θ0∥H(θ0)
= O(n−1/2), we have

Pr(TWald > tn(α))

≤ 2nde−C(
λ
3−ν
⋆ n

R2d
)1/(ν−1)

+ e−Ch(∥Ω(θ⋆)∥−1
2 ).

If ∥θ∗ − θ0∥H(θ0)
= ω(n−1/2), we have

Pr(TWald > tn(α))

≥ 1− 2nde−C(
λ
3−ν
⋆ n

R2d
)

1
ν−1 − e

−Ch(
nτ̄′

n
∥Ω(θ⋆)∥2

)
,

where τ̄ ′n ≍ ∥θ⋆ − θ0∥2H(θ0)
.

(c) The same statements in (b) hold for TLR.

Recall that θ⋆ depends on n under the local alternatives.
When ∥θ⋆ − θ0∥H(θ0)

= O(n−1/2) and n is sufficiently large,
we have ∥Ω(θ0)∥2 ≈ ∥Ω(θ⋆)∥2 = 1. Hence, according to
Thm. 2, the powers of the three tests are asymptotically upper
bounded by a constant. When ∥θ⋆ − θ0∥H(θ0)

= ω(n−1/2)

and ∥θ⋆ − θ0∥H(θ0)
= O(n−(ν−2)/(2ν−2)), the powers of the

three tests tend to one at rate O
(
exp(−n ∥θ⋆ − θ0∥2H(θ0)

)
)
.

Remark. A key result we establish towards proving Thms. 1
and 2 is

∥θn − θ⋆∥2Hn(θn)
≲

d⋆
n

+
∥Ω(θ⋆)∥2

n
log

e

δ

whenever n satisfies (5). This bound matches the misspecified
Cramér-Rao lower bound [e.g., 2, Thm. 1] up to a constant
factor. The bound also yields the Wald confidence set for the
estimator θn under model misspecification.

4. EXAMPLES

To illustrate the generality of our results, we instantiate them
on two familiar examples: generalized linear modeling us-
ing maximum likelihood and density estimation using score
matching. Numerical examples can be found in [9, Sec. 5].

Example 1 (Generalized linear models). Let Z := (X,Y )
be a pair of input and output, where X ∈ X ⊂ Rd and
Y ∈ Y ⊂ R. Let t : X ×Y → Rd, h : X ×Y → R, and µ be
a measure on Y . Consider the statistical model

pθ(y | x) ∼ exp[θ⊤t(x, y) + h(x, y)]∫
exp[θ⊤t(x, ȳ) + h(x, ȳ)]dµ(ȳ)

dµ(y)

with ∥t(X,Y )∥2 ≤a.s. M . It induces the loss function

ℓ(θ; z) := −θ⊤t(x, y)− h(x, y)

+ log

∫
exp[θ⊤t(x, ȳ) + h(x, ȳ)]dµ(ȳ),

which is (2M, 2)-generalized self-concordant. Hence, our
bounds from Sec. 3.2 hold with ν = 2 and R = 2M .

Example 2 (Score matching with exponential families). As-
sume that Z = Rp. Consider an exponential family on Rd with
probability density

log pθ(z) = θ⊤t(z) + h(z)− Λ(θ).

The non-normalized density qθ reads log qθ(z) = θ⊤t(z) +
h(z). The score matching loss becomes

ℓ(θ; z) =
1

2
θ⊤A(z)θ − b(z)⊤θ + c(z) + const,

where A(z) :=
∑p

k=1
∂t(z)
∂zk

(∂t(z)
∂zk

)⊤
is positive semi-definite

and

b(z) :=

p∑
k=1

[
∂2t(z)

∂z2k
+

∂h(z)

∂zk

∂t(z)

∂zk

]

c(z) :=

p∑
k=1

[
∂2h(z)

∂z2k
+

(∂h(z)
∂zk

)2]
.

The score matching loss ℓ(θ; z) is convex. Moreover, since
the third derivative of ℓ(·; z) is zero, the score matching loss
is generalized self-concordant for all ν ≥ 2 and R ≥ 0.
Therefore, our bounds from Sec. 3.2 hold with ν = 2 and
R = 0.
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