Non-Asymptotic Analysis of M-Estimation for Statistical Learning and Inference under Self-Concordance

Lang Liu

University of Washington

October 21, 2022

Collaborators

Carlos Cinelli

Zaid Harchaoui
@ COLT 2022
@ NeurIPS 2022 workshop on Score-Based Methods Submitted @ AISTATS 2023

Maximum Likelihood Estimation

- Data $Z_{1}, \ldots, Z_{n} \stackrel{\text { i.i.d. }}{\sim} P$.
- Parametric family $\mathcal{P}_{\Theta}:=\left\{P_{\theta}: \theta \in \Theta \subset \mathbb{R}^{d}\right\}$.
- Target parameter

$$
\theta_{\star}:=\underset{\theta \in \Theta}{\arg \min }\{\mathbb{E}\left[-\log P_{\theta}(Z)\right]=: \mathbb{E}[\underbrace{\ell(\theta ; Z)}_{\text {Loss function }}]=: \underbrace{L(\theta)}_{\text {Population risk }}\} .
$$

- Maximum likelihood estimator (MLE)

$$
\theta_{n}:=\underset{\theta \in \Theta}{\arg \min }\{-\frac{1}{n} \sum_{i=1}^{n} \log P_{\theta}\left(Z_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta ; Z_{i}\right)=: \underbrace{L_{n}(\theta)}_{\text {Empirical risk }}\} .
$$

Generalized Linear Models

- Data $Z:=(X, Y) \in \mathcal{X} \times \mathcal{Y}$.
- Sufficient statistic $t: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{d}$.
- Reference measure μ on \mathcal{Y}.
- Statistical model

$$
p_{\theta}(y \mid x) \sim \frac{\exp \left(\theta^{\top} t(x, y)\right)}{\int \exp \left(\theta^{\top} t(x, \bar{y})\right) \mathrm{d} \mu(\bar{y})} \mathrm{d} \mu(y)
$$

- Loss function

$$
\ell(\theta ; z)=-\theta^{\top} t(x, y)+\log \int \exp \left(\theta^{\top} t(x, \bar{y})\right) \mathrm{d} \mu(\bar{y})
$$

Example: Softmax Regression

- Data space $\mathcal{X} \subset \mathbb{R}^{\tau}$ and $\mathcal{Y}=\{1, \ldots, K\}$.
- Statistical model

$$
p(y=k \mid x) \sim \frac{\exp \left(w_{k}^{\top} x\right)}{\sum_{j=1}^{K} \exp \left(w_{j}^{\top} x\right)} .
$$

Example: Softmax Regression

- Data space $\mathcal{X} \subset \mathbb{R}^{\tau}$ and $\mathcal{Y}=\{1, \ldots, K\}$.
- Statistical model

$$
p(y=k \mid x) \sim \frac{\exp \left(w_{k}^{\top} x\right)}{\sum_{j=1}^{K} \exp \left(w_{j}^{\top} x\right)}
$$

- Define $\theta^{\top}:=\left(w_{1}^{\top}, \ldots, w_{K}^{\top}\right)$ and

$$
t(x, y)^{\top}:=\left(0_{\tau}^{\top}, \ldots, 0_{\tau}^{\top}, x^{\top}, 0_{\tau}^{\top}, \ldots, 0_{\tau}^{\top}\right)
$$

Then we have

$$
p(y=k \mid x) \sim \frac{\exp \left(\theta^{\top} t(x, k)\right)}{\sum_{y=1}^{K} \exp \left(\theta^{\top} t(x, y)\right)}
$$

Example: Conditional Random Fields

- Data space $\mathcal{X}=\mathbb{X}^{T}$ and $\mathcal{Y}=\mathbb{Y}^{T}$.
- Conditional random fields on a chain

$$
p(y \mid x) \propto \exp \left\{\sum_{t=1}^{T-1} \lambda_{t} f_{t}\left(x, y_{t}, y_{t+1}\right)+\sum_{t=1}^{T} \mu_{t} g_{t}\left(x, y_{t}\right)\right\} \mathrm{d} \mu(y)
$$

Example: Conditional Random Fields

- Data space $\mathcal{X}=\mathbb{X}^{T}$ and $\mathcal{Y}=\mathbb{Y}^{T}$.
- Conditional random fields on a chain

$$
p(y \mid x) \propto \exp \left\{\sum_{t=1}^{T-1} \lambda_{t} f_{t}\left(x, y_{t}, y_{t+1}\right)+\sum_{t=1}^{T} \mu_{t} g_{t}\left(x, y_{t}\right)\right\} \mathrm{d} \mu(y)
$$

- Define $\theta^{\top}:=\left(\lambda_{1}, \ldots, \lambda_{T-1}, \mu_{1}, \ldots, \mu_{T}\right)$ and

$$
t(x, y)^{\top}:=\left(f_{1}\left(x, y_{1}, y_{2}\right), \ldots, f_{T-1}\left(x, y_{T-1}, y_{T}\right), g_{1}\left(x, y_{1}\right), \ldots, g_{T}\left(x, y_{T}\right)\right)
$$

Then we have

$$
p(y \mid x) \sim \frac{\exp \left(\theta^{\top} t(x, y)\right)}{\int \exp \left(\theta^{\top} t(x, \bar{y})\right) \mathrm{d} \mu(\bar{y})} \mathrm{d} \mu(y)
$$

Related Work: Asymptotic Theory ${ }^{\dagger}$

Well-specified model: $P \in \mathcal{P}_{\Theta}$

$$
\sqrt{n}\left(\theta_{n}-\theta_{\star}\right) \rightarrow_{d} \mathcal{N}\left(0, H_{\star}^{-1}\right),
$$

where $H_{\star}:=H\left(\theta_{\star}\right):=\nabla^{2} L\left(\theta_{\star}\right)$.
${ }^{\dagger}$ Cramér '46, Huber '74, Ibragimov and Has'minskii '81, van der Vaart '00.

Related Work: Asymptotic Theory ${ }^{\dagger}$

Well-specified model: $P \in \mathcal{P}_{\Theta}$

$$
\sqrt{n}\left(\theta_{n}-\theta_{\star}\right) \rightarrow_{d} \mathcal{N}\left(0, H_{\star}^{-1}\right),
$$

where $H_{\star}:=H\left(\theta_{\star}\right):=\nabla^{2} L\left(\theta_{\star}\right)$.

Mis-specified model: $P \notin \mathcal{P}_{\Theta}$

$$
\sqrt{n}\left(\theta_{n}-\theta_{\star}\right) \rightarrow_{d} \mathcal{N}\left(0, H_{\star}^{-1} G_{\star} H_{\star}^{-1}\right),
$$

where $G_{\star}:=G\left(\theta_{\star}\right):=\mathbb{E}\left[\nabla \ell\left(\theta_{\star} ; Z\right) \nabla \ell\left(\theta_{\star} ; Z\right)^{\top}\right]$.
${ }^{\dagger}$ Cramér '46, Huber '74, Ibragimov and Has'minskii '81, van der Vaart '00.

Asymptotic Confidence Set

- Asymptotic normality $\sqrt{n}\left(\theta_{n}-\theta_{\star}\right) \rightarrow_{d} \mathcal{N}(0, \Sigma)$.
- Consistent estimator $\Sigma_{n} \rightarrow_{p} \Sigma$.
- Slutsky's lemma $n\left\|\Sigma_{n}^{-1 / 2}\left(\theta_{n}-\theta_{\star}\right)\right\|_{2}^{2} \rightarrow_{d} \chi_{d}^{2}$.

Asymptotic Confidence Set

- Asymptotic normality $\sqrt{n}\left(\theta_{n}-\theta_{\star}\right) \rightarrow_{d} \mathcal{N}(0, \Sigma)$.
- Consistent estimator $\Sigma_{n} \rightarrow_{p} \Sigma$.
- Slutsky's lemma $n\left\|\Sigma_{n}^{-1 / 2}\left(\theta_{n}-\theta_{\star}\right)\right\|_{2}^{2} \rightarrow_{d} \chi_{d}^{2}$.
- Asymptotic confidence set $\left\{\theta:\left\|\Sigma_{n}^{-1 / 2}\left(\theta_{n}-\theta\right)\right\|_{2}^{2} \leq q_{\chi_{d}^{2}}(1-\delta) / n\right\}$ \triangleright Asymptotically tight.
\triangleright Valid for $n \rightarrow \infty$ and fixed d.

Related Work: Non-Asymptotic Theory

Specific models

- Gaussian regression (Baraud '04).
- Ridge regression (Hsu et al '14).
- Logistic regression (Bach '10).

Related Work: Non-Asymptotic Theory

Specific models

- Gaussian regression (Baraud '04).
- Ridge regression (Hsu et al '14).
- Logistic regression (Bach '10).

General approaches

- Empirical process (Spokoiny '12).
- Convex optimization (Ostrovskii and Bach '21).

Non-Asymptotic Confidence Set under Strong Convexity

- Excess risk $L\left(\theta_{n}\right)-L\left(\theta_{\star}\right) \leq O\left(n^{-1}\right)$ with high probability.
- Taylor's theory $\left\|H(\bar{\theta})^{1 / 2}\left(\theta_{n}-\theta_{\star}\right)\right\|_{2}^{2} \leq O\left(n^{-1}\right)$ with high probability.
- Strong convexity $H(\theta) \succeq \lambda I$ implies $\left\|\theta_{n}-\theta_{\star}\right\|_{2}^{2} \leq O\left((n \lambda)^{-1}\right)$ with high probability.

Non-Asymptotic Confidence Set under Strong Convexity

- Excess risk $L\left(\theta_{n}\right)-L\left(\theta_{\star}\right) \leq O\left(n^{-1}\right)$ with high probability.
- Taylor's theory $\left\|H(\bar{\theta})^{1 / 2}\left(\theta_{n}-\theta_{\star}\right)\right\|_{2}^{2} \leq O\left(n^{-1}\right)$ with high probability.
- Strong convexity $H(\theta) \succeq \lambda I$ implies $\left\|\theta_{n}-\theta_{\star}\right\|_{2}^{2} \leq O\left((n \lambda)^{-1}\right)$ with high probability.
- Non-asymptotic confidence set $\left\{\theta:\left\|\theta_{n}-\theta\right\|_{2}^{2} \leq O\left((n \lambda)^{-1}\right)\right\}$.
\triangleright Conservative.
\triangleright Valid for all n and d.

Asymptotic and Non-Asymptotic Confidence Sets

Asymptotic theory

- $n\left\|\sum_{n}^{-1 / 2}\left(\theta_{n}-\theta_{\star}\right)\right\|_{2}^{2} \rightarrow_{d} \chi_{d}^{2}$.
- Slutsky’s Lemma.
- Asymptotically tight.
- Valid for $n \rightarrow \infty$ and fixed d.

Non-asymptotic theory

- $\left\|\theta_{n}-\theta_{\star}\right\|_{2}^{2} \leq O\left((n \lambda)^{-1}\right)$.
- Strong convexity.
- Conservative.
- Valid for all n and d.

Asymptotic and Non-Asymptotic Confidence Sets

Asymptotic theory

- $n\left\|\Sigma_{n}^{-1 / 2}\left(\theta_{n}-\theta_{\star}\right)\right\|_{2}^{2} \rightarrow_{d} \chi_{d}^{2}$.
- Slutsky’s Lemma.
- Asymptotically tight.
- Valid for $n \rightarrow \infty$ and fixed d.

Our contribution

- $\left\|\Sigma_{n}^{-1 / 2}\left(\theta_{n}-\theta_{\star}\right)\right\|_{2}^{2} \leq O\left(n^{-1}\right)$.
- Self-concordance.
- Conservative.
- Valid for $n>O\left(d+d_{\star}\right)$.

Non-Asymptotic Theory under Self-Concordance

Non-asymptotic theory: with high probability,

$$
\underbrace{\nabla L\left(\theta_{\star}\right)\left(\theta_{n}-\theta_{\star}\right)}_{0}+\frac{1}{2}\left(\theta_{n}-\theta_{\star}\right)^{\top} H(\bar{\theta})\left(\theta_{n}-\theta_{\star}\right)=\underbrace{L\left(\theta_{n}\right)-L\left(\theta_{\star}\right)}_{\text {Excess risk }} \leq O\left(n^{-1}\right)
$$

Non-Asymptotic Theory under Self-Concordance

Non-asymptotic theory: with high probability,

$$
\underbrace{\nabla L\left(\theta_{\star}\right)\left(\theta_{n}-\theta_{\star}\right)}_{0}+\frac{1}{2}\left(\theta_{n}-\theta_{\star}\right)^{\top} H(\bar{\theta})\left(\theta_{n}-\theta_{\star}\right)=\underbrace{L\left(\theta_{n}\right)-L\left(\theta_{\star}\right)}_{\text {Excess risk }} \leq O\left(n^{-1}\right)
$$

Strong convexity $H(\theta) \succeq \lambda I$

$$
\lambda\left\|\theta_{n}-\theta_{\star}\right\|_{2}^{2} \leq O\left(n^{-1}\right)
$$

$$
\left\|H_{n}\left(\theta_{n}\right)^{1 / 2}\left(\theta_{n}-\theta_{\star}\right)\right\|_{2}^{2} \leq O\left(n^{-1}\right)
$$

Strong Convexity versus Self-Concordance

Strong convexity

- Globally lower bounded Hessian.
- No control on how Hessian varies.

Strong Convexity versus Self-Concordance

Strong convexity

- Globally lower bounded Hessian.
- No control on how Hessian varies.

Self-concordance

- No global lower bound.
- Slowly varying Hessian.

Self-Concordance

Define $\operatorname{D} f(x)[u]:=\left.\frac{\mathrm{d}}{\mathrm{d} t} f(x+t u)\right|_{t=0}$ and $\mathrm{D}^{2} f(x)[u, u]:=\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} f(x+t u)\right|_{t=0}$.

Definition 1 (Nesterov and Nemirovskii '94)
Let f be closed and convex. We say f is self-concordant with parameter $R>0$ if

$$
\left|\mathrm{D}^{3} f(x)[u, u, u]\right| \leq R\left|\mathrm{D}^{2} f(x)[u, u]\right|^{3 / 2} .
$$

Self-Concordance

Define $\mathrm{D} f(x)[u]:=\left.\frac{\mathrm{d}}{\mathrm{d} t} f(x+t u)\right|_{t=0}$ and $\mathrm{D}^{2} f(x)[u, u]:=\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} f(x+t u)\right|_{t=0}$.

Definition 1 (Nesterov and Nemirovskii '94)

Let f be closed and convex. We say f is self-concordant with parameter $R>0$ if

$$
\left|\mathrm{D}^{3} f(x)[u, u, u]\right| \leq R\left|\mathrm{D}^{2} f(x)[u, u]\right|^{3 / 2} .
$$

- Newton's method.
- Interior point methods.
- Most non-quadratic loss functions are not self-concordant.

Pseudo Self-Concordance

Definition 2 (Bach '10)
Let f be closed and convex. We say f is pseudo self-concordant with parameter $R>0$ if $\left|\mathrm{D}^{3} f(x)[u, u, u]\right| \leq R\|u\|_{2} \mathrm{D}^{2} f(x)[u, u]$.

- GLMs with $\|t(x, y)\| \leq M$ are pseudo self-concordant with $R=2 M$.

Pseudo Self-Concordance

Definition 2 (Bach '10)

Let f be closed and convex. We say f is pseudo self-concordant with parameter $R>0$ if

$$
\left|\mathrm{D}^{3} f(x)[u, u, u]\right| \leq R\|u\|_{2} \mathrm{D}^{2} f(x)[u, u] .
$$

- GLMs with $\|t(x, y)\| \leq M$ are pseudo self-concordant with $R=2 M$.
- Hessian approximation:

$$
e^{-R\|y-x\|_{2}} \nabla^{2} f(x) \preceq \nabla^{2} f(y) \preceq e^{R\|y-x\|_{2}} \nabla^{2} f(x) .
$$

- Localization: $x_{\star}:=\arg \min _{x} f(x)$ satisfies

$$
\left\|x_{\star}-x\right\|_{\nabla^{2} f(x)} \lesssim\|\nabla f(x)\|_{\nabla^{2} f(x)^{-1}}
$$

where $\|u\|_{A}:=\sqrt{u^{\top} A u}$.

Effective Dimension

Effective dimension $d_{\star}:=\operatorname{Tr}\left(\Omega_{\star}\right):=\operatorname{Tr}\left(H_{\star}^{-1 / 2} G_{\star} H_{\star}^{-1 / 2}\right)$

- Well-specified model: $d_{\star}=d$.
- Mis-specified model:
\triangleright Problem-specific characterization of the complexity of Θ.
$\triangleright \sqrt{n} H_{\star}^{1 / 2}\left(\theta_{n}-\theta_{\star}\right) \rightarrow_{d} \mathcal{N}\left(0, \Omega_{\star}\right)$.

Effective Dimension

Effective dimension $d_{\star}:=\operatorname{Tr}\left(\Omega_{\star}\right):=\operatorname{Tr}\left(H_{\star}^{-1 / 2} G_{\star} H_{\star}^{-1 / 2}\right)$

- Well-specified model: $d_{\star}=d$.
- Mis-specified model:
\triangleright Problem-specific characterization of the complexity of Θ.
$\triangleright \sqrt{n} H_{\star}^{1 / 2}\left(\theta_{n}-\theta_{\star}\right) \rightarrow_{d} \mathcal{N}\left(0, \Omega_{\star}\right)$.

		Poly-Poly	Poly-Exp	Exp-Poly	Exp-Exp
Eigendecay	G_{\star}	$i^{-\alpha}$	$i^{-\alpha}$	$e^{-\mu i}$	$e^{-\mu i}$
	H_{\star}	$i^{-\beta}$	$e^{-\nu i}$	$i^{-\beta}$	$e^{-\nu i}$
Ratio	d_{\star} / d	$d^{(\beta-\alpha) \vee(-1)}$	$d^{-\alpha} e^{\nu d}$	d^{-1}	1 if $\mu=\nu$ d^{-1} if $\mu>\nu$ $d^{-1} e^{(\nu-\mu) d}$ if $\mu<\nu$

Main Results

Theorem 3 (Informal)

Under the pseudo self-concordance assumption and other assumptions, whenever

$$
n \gtrsim O\left(d+d_{\star}\right),
$$

with probability at least $1-\delta$, the MLE θ_{n} uniquely exists and satisfies

$$
n\left\|\theta_{n}-\theta_{\star}\right\|_{H_{\star}}^{2} \lesssim d_{\star}+\left\|\Omega_{\star}\right\|_{2} \log (1 / \delta)
$$

Main Results

Theorem 3 (Informal)

Under the pseudo self-concordance assumption and other assumptions, whenever

$$
n \gtrsim O\left(d+d_{\star}\right),
$$

with probability at least $1-\delta$, the MLE θ_{n} uniquely exists and satisfies

$$
n\left\|\theta_{n}-\theta_{\star}\right\|_{H_{\star}}^{2} \lesssim d_{\star}+\left\|\Omega_{\star}\right\|_{2} \log (1 / \delta)
$$

- Well-specified model $d_{\star}=d$ and $\left\|\Omega_{\star}\right\|_{2}=1$.
- Recall $n\left\|\theta_{n}-\theta_{\star}\right\|_{H_{\star}}^{2} \rightarrow_{d} \chi_{d_{\star}}^{2}$.
- Characterize the critical sample size.

Main Results

Proof Sketch

- Pseudo self-concordance: $\ell(\cdot ; z)$ pseudo self-concordant implies L_{n} as well.
- Localization: $\left\|\theta_{n}-\theta_{\star}\right\|_{H_{n}\left(\theta_{\star}\right)}^{2} \lesssim\left\|\nabla L_{n}\left(\theta_{\star}\right)\right\|_{H_{n}\left(\theta_{\star}\right)^{-1}}^{2}$.
- Matrix concentration: $H_{\star} / 2 \preceq H_{n}\left(\theta_{\star}\right) \preceq 2 H_{\star}$, which implies

$$
\left\|\theta_{n}-\theta_{\star}\right\|_{H_{\star}}^{2} \lesssim\left\|\nabla L_{n}\left(\theta_{\star}\right)\right\|_{H_{\star}^{-1}}^{2}
$$

- Quadratic form of sub-Gaussian vectors:

$$
n\left\|\theta_{n}-\theta_{\star}\right\|_{H_{\star}}^{2} \lesssim d_{\star}+\left\|\Omega_{\star}\right\|_{2} \log (1 / \delta)
$$

Main Results

Confidence bound

- Approximate H_{\star} by $H_{n}\left(\theta_{n}\right)$ (Hessian approximation + matrix concentration).
- Approximate G_{\star} by $G_{n}\left(\theta_{n}\right)$ (Lipschitz property of the second moment).
- Estimators $\Omega_{n}\left(\theta_{n}\right):=H_{n}\left(\theta_{n}\right)^{-1 / 2} G_{n}\left(\theta_{n}\right) H_{n}\left(\theta_{n}\right)^{-1 / 2}$ and $d_{n}:=\operatorname{Tr}\left(\Omega_{n}\left(\theta_{n}\right)\right)$.

Theorem 4 (Informal)

Under the pseudo self-concordance assumption and other assumptions, whenever

$$
n \gtrsim O\left(d \log n+d_{\star}\right)
$$

with probability at least $1-\delta$, the MLE θ_{n} uniquely exists and satisfies

$$
n\left\|\theta_{n}-\theta_{\star}\right\|_{H_{n}\left(\theta_{n}\right)}^{2} \lesssim d_{n}+\left\|\Omega_{n}\left(\theta_{n}\right)\right\|_{2} \log (1 / \delta)
$$

Numerical Illustration: Approximation of the Effective Dimension

- Least squares: $X \sim \mathcal{N}\left(0, I_{d}\right)$ and $Y=\theta_{0}^{\top} X+\mathcal{N}(0,1)$.
- Logistic regression: $X \sim \mathcal{N}\left(0, I_{d}\right)$ and $\mathbb{P}(Y=1)=\sigma\left(\theta_{0}^{\top} X\right)$.

Numerical Illustration: Shape of the Confidence Set

- Logistic regression: $X \sim \mathcal{N}(0, \Sigma)$ and $\mathbb{P}(Y=1)=\sigma\left(\theta_{0}^{\top} X\right)$.

Extension: Goodness of Fit Testing

Goodness of fit testing

$$
\mathbf{H}_{0}: \theta_{\star}=\theta_{0} \leftrightarrow \mathbf{H}_{1}: \theta_{\star} \neq \theta_{0} .
$$

Test	Test statistic	$\theta_{\star}=\theta_{0}$	$\theta_{\star}=\theta_{0}+\omega\left(n^{-1 / 2}\right)$	$\theta_{\star}=\theta_{0}+O\left(n^{-1 / 2}\right)$		
Rao's score	$\left\\|\nabla \ell_{n}\left(\theta_{0}\right)\right\\|_{H_{n}\left(\theta_{0}\right)-1}^{2}$	$O(d / n)$	$1-o(1)$	$O(1)$		
Likelihood ratio	$2\left[\ell_{n}\left(\theta_{0}\right)-\ell_{n}\left(\theta_{n}\right)\right]$	$O(d / n)$	$1-o(1)$	$O(1)$		
Wald	$\left\\|\theta_{n}-\theta_{0}\right\\|_{H_{n}\left(\theta_{n}\right)}^{2}$	$O(d / n)$	$1-o(1)$	$O(1)$		

Extension: Semi-Parametric Estimation

- Nuisance parameter $g_{0} \in\left(\mathcal{G},\|\cdot\|_{\mathcal{G}}\right)$.
- Population risk $L(\theta, g):=\mathbb{E}[\ell(\theta, g ; Z)]$.
- Two-step learning procedure based on sample-splitting ${ }^{\ddagger}$
\triangleright Obtain a nonparametric estimator \hat{g} on one sub-sample.
\triangleright Estimate θ_{\star} via empirical risk minimization on another sub-sample:

$$
\theta_{n}=\underset{\theta \in \Theta}{\arg \min } L_{n}(\theta, \hat{g}) .
$$

Example 5 (Robinson '88)

Let Y outcome, D treatment, and X control. Consider

$$
Y=D \theta_{\star}+g_{0}(X)+U
$$

[^0]
Extension: Semi-Parametric Estimation

Theorem 6 (Informal)

Under the pseudo self-concordance and other assumptions, with probability at least $1-\delta$,

$$
\left\|\theta_{n}-\theta_{\star}\right\|_{H_{\star}}^{2} \lesssim \frac{d_{\star}}{n} \log (1 / \delta)+\left\|\hat{g}-g_{0}\right\|_{\mathcal{G}}^{2} .
$$

- If g_{0} is p-smooth, it can be estimated at rate $O\left(n^{-p /(2 p+d)}\right)$.
- The term $\left\|\hat{g}-g_{0}\right\|_{\mathcal{G}}^{2}$ cannot achieve the $O\left(n^{-1}\right)$ rate.

Extension: Semi-Parametric Estimation

Neyman orthogonality (Neyman '79)

$$
\mathrm{D}_{g} \nabla_{\theta} L\left(\theta_{\star}, g_{0}\right)\left[g-g_{0}\right]=0
$$

Theorem 7 (Informal)

Under the pseudo self-concordance, Neyman orthogonality, and other assumptions, with probability at least $1-\delta$,

$$
\left\|\theta_{n}-\theta_{\star}\right\|_{H_{\star}}^{2} \lesssim \frac{d_{\star}}{n} \log (1 / \delta)+\left\|\hat{g}-g_{0}\right\|_{\mathcal{G}}^{4} .
$$

- If g_{0} is p-smooth, it can be estimated at rate $O\left(n^{-p /(2 p+d)}\right)$.
- The term $\left\|\hat{g}-g_{0}\right\|_{\mathcal{G}}^{4}$ can achieve the $O\left(n^{-1}\right)$ rate as long as $p \geq d / 2$.

Extension: Semi-Parametric Estimation

Neyman orthogonality (Neyman '79)

$$
\mathrm{D}_{g} \nabla_{\theta} L\left(\theta_{\star}, g_{0}\right)\left[g-g_{0}\right]=0 .
$$

Summary

- Non-asymptotic bounds for the M-estimator under self-concordance.
- Finite-sample counterpart of the asymptotic confidence set.
- Characterize the critical sample size enough to enter the asymptotic regime.
- Extension to goodness-of-fit testing and semi-parametric estimation.

Follow-up work with Jillian and Krishna

Partially Linear Model

Let Y outcome, D treatment, and X control. Consider

$$
\begin{aligned}
Y & =D \theta_{0}+\alpha_{0}(X)+U \\
D & =\beta_{0}(X)+V .
\end{aligned}
$$

- Partialling out the effect of X

$$
Y=\left(D-\beta_{0}(X)\right) \theta_{0}+\gamma_{0}(X)+U
$$

- Reparameterization $g_{0}=\left(\beta_{0}, \gamma_{0}\right)$.
- Neyman orthogonal risk

$$
L(\theta, g):=\mathbb{E}\left[(Y-\gamma(X)-(D-\beta(X)) \theta)^{2}\right] .
$$

Proof Sketch for the OSL Estimation Bound

By Taylor's theorem,

$$
\begin{aligned}
0 & \geq L_{n}\left(\theta_{n}, \hat{g}\right)-L_{n}\left(\theta_{\star}, \hat{g}\right) \\
& =\nabla_{\theta} L_{n}\left(\theta_{\star}, \hat{g}\right)^{\top}\left(\theta_{n}-\theta_{\star}\right)+\left\|\theta_{n}-\theta_{\star}\right\|_{H_{n}(\bar{\theta}, \hat{g})}^{2} / 2 \\
& =\left[\nabla_{\theta} L_{n}\left(\theta_{\star}, \hat{g}\right)-\nabla_{\theta} L\left(\theta_{\star}, \hat{g}\right)\right]^{\top}\left(\theta_{n}-\theta_{\star}\right)+\nabla_{\theta} L\left(\theta_{\star}, \hat{g}\right)^{\top}\left(\theta_{n}-\theta_{\star}\right)+\left\|\theta_{n}-\theta_{\star}\right\|_{H_{n}(\bar{\theta}, \hat{g})}^{2} / 2 \\
& \geq\left\|\nabla_{\theta} L_{n}\left(\theta_{\star}, \hat{g}\right)-\nabla_{\theta} L\left(\theta_{\star}, \hat{g}\right)\right\|_{H_{\star}^{-1}}\left\|\theta_{n}-\theta_{\star}\right\|_{H_{\star}}+\nabla_{\theta} L\left(\theta_{\star}, \hat{g}\right)^{\top}\left(\theta_{n}-\theta_{\star}\right)+\left\|\theta_{n}-\theta_{\star}\right\|_{H_{n}(\bar{\theta}, \hat{g})}^{2} / 2 \\
& \gtrsim-\left[\sqrt{d_{\star} / n}+\left\|\hat{g}-g_{0}\right\|_{\mathcal{G}}^{2}\right]\left\|\theta_{n}-\theta_{\star}\right\|_{H_{\star}}+\left\|\theta_{n}-\theta_{\star}\right\|_{H_{\star}}^{2} .
\end{aligned}
$$

[^0]: ${ }^{\ddagger}$ Chernozhukov et al '18, Foster and Syrgkanis '20.

