UNIVERSITY of WASHINGTON

Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals

Lang Liu¹, Krishna Pillutla², Sean Welleck^{2,3}, Sewoong Oh², Yejin Choi^{2,3}, Zaid Harchaoui¹

Overview

- The spectacular success of deep generative models calls for **quan**titative tools to measure their performance.
- **Divergence frontiers** have recently been proposed as an evaluation framework for generative models. In practice, they are estimated from data via **quantization** and **empirical estimation**.
- We establish **non-asymptotic bounds** for the estimation procedure, characterizing the sample complexity of divergence frontiers.

Image and Text Generation

High quality but low variety

... the techniques we used when cleaning out my mom's fabric stash last week... Next, you need to get a small, sharp knife. I like to use a small, sharp knife. I like to use a small, sharp knife.

Low quality but high variety

...the techniques we used when cleaning out my mom's fabric stash last week... I had a great deal of décor management and was able to stash the excess items away for safekeeping.

Divergence frontiers (Djolonga et al. '20). Define the mixture $R_{\lambda} = \lambda P + (1 - \lambda)Q$. Let

Statistical summary.

¹ Department of Statistics, University of Washington ² Paul G. Allen School of Computer Science & Engineering, University of Washington ³ Allen Institute for Artificial Intelligence

Divergence Frontiers

$$\mathcal{F}(P,Q) := \left\{ (\mathsf{KL}(Q || R_{\lambda}), \mathsf{KL}(P || R_{\lambda})) : \lambda \in (0,1) \right\}.$$

• The linearized cost (λ -skew Jensen-Shannon divergence)

 $\mathcal{L}_{\lambda}(P,Q) := \lambda \mathsf{KL}(P \| R_{\lambda}) + (1-\lambda) \mathsf{KL}(Q \| R_{\lambda}).$

• Frontier integral—statistical summary

$$\mathsf{FI}(P,Q) := 2 \int_0^1 \mathcal{L}_\lambda(P,Q) \mathrm{d}\lambda.$$

-Symmetric divergence, i.e., FI(P,Q) = 0 iff P = Q. - Taking values in [0, 1].

3. How many data are needed to achieve a good accuracy?

$$\mathsf{FI}(\hat{P}_n, \hat{Q}_n) - \mathsf{FI}(P, Q) \Big| \lesssim \sqrt{\frac{\log 1/\delta}{n}} + \sqrt{\frac{k}{n}} + \frac{k}{n}$$

Total error. For arbitrary P and Q and any k, there exists a partition \mathcal{S}_k of size k such that

 $\mathbb{E} | \mathsf{FI}(\hat{P}) |$

$$\mathbb{E}\left|\mathsf{FI}(\hat{P}_{\mathcal{S}_{k},n,b},\hat{Q}_{\mathcal{S}_{k},n,b})-\mathsf{FI}(P,Q)\right| \lesssim \frac{\sqrt{nk}+bk}{n+bk}+\frac{1}{k}.$$

Main Results

Statistical error. Assume P and Q are discrete with support size

$$\left|\mathcal{P}_{\mathcal{S}_{k},n},\hat{Q}_{\mathcal{S}_{k},n}\right)-\mathsf{FI}(P,Q)\right|\lesssim\sqrt{\frac{k}{n}+\frac{k}{n}+\frac{1}{k}}$$

Smoothed estimators. Let $\hat{P}_{S_k,n,b}$ be the add-*b* estimator of P_{S_k} .

Code available at *https://github.com/langliu95/divergence-frontier-bounds*. Presented at NeurIPS 2021. Copyright 2021 by the authors.