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Image and Text Generation

Several people have asked about the

techniques we used when cleaning


out my mom’s fabric stash last week……

I had a great deal of décor management 

and was able to stash the excess 
items away for safekeeping.

Several people have asked about the

techniques we used when cleaning


out my mom’s fabric stash last week……

Next, you need to get a small, sharp 

knife. I like to use a small, sharp 
knife. I like to use a small, sharp knife.

High quality but low variety Low quality but high variety

Kynkäänniemi et al. (2019)

Pillutla et al. (2021)
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Type I and Type II Errors in Generative Modeling

Support of

human or

real data

Distribution of
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How to quantify them?
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Divergence Frontiers for Generative Models

I Divergence frontiers for data distribution P and model distribution Q.
I Applications in vision (Sajjadi et al. ’18, Kynkäänniemi et al. ’19, Djolonga et al. ’20).
I Applications in NLP (Pillutla et al. ’21; this NeurIPS).

Type I error
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Estimation Procedure of Divergence Frontiers

Continuous Distribution Quantized Distribution Empirical Estimator
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Estimation Procedure of Divergence Frontiers

Continuous Distribution Quantized Distribution Empirical Estimator

1. How to select the

quantization level ?k

2. Can we do better than the

naïve empirical estimator?

3. How many data points are needed to achieve a good accuracy?
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Main Results

I Finite-sample bounds.
. �antization level k ∝ O(n1/3).
. Missing-mass adaptive smoothing improves the estimation accuracy (e.g.,

add-constant and Good-Turing).
. Sample complexity O(n−1/2 log n).

I Statistical summary—frontier integral.
I Generalization to f-divergences.
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Experimental Results

Missing-mass adaptive smoothing improves the estimation accuracy.
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Thank You

Paper: arxiv.org/abs/2106.07898

Thank you!
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