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Overview

e Establish non-asymptotic bounds on the normalized likelihood
score whose tail behavior is governed by an effective dimension.

e Obtain finite-sample confidence bound for the maximum likelihood
estimator and analysis for Rao’s score test.

e Allow the loss to be generalized self-concordance and the model
to be mis-specified.

Maximum Likelihood Estimation
Problem. Let Z ~ P and Py := {F: 0 € © C R4},

0, = arg min L(0)
pcO ~~

population risk

= EZN]}D[_ 1ng€<Z>}

When the model is well-specified, i.e., P = P, assume 0, = 0.

Empirical risk minimization. Given an i.i.d. sample {Z;}" , ~ PP, the
maximum likelihood estimator is

1 n
6,, = arg min L,(0 = —— log pe( Z;
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empirical risk

Sp(0) .= =V L,(0) is the likelihood score.

Generalized Linear Models
Generalized linear models (GLM). Let Z .= (X, Y) € X x ).

poly | ) oc exp(0 " t(z, y))du(y).

ot: X x Y — R? sufficient statistic.
e 1. reference measure on ), e.g., Lebesgue/counting measure.
Example: softmax regression. XY C R” and YV ={1,..., K}.

ply =k | x) o< exp(w, x) o< exp (HTt(x, k)),

where ' .= (w,,...,wy) and t(z,y)" = (0 ,...,0 "0, ...,0]).
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Normalized Likelihood Score

Classical asymptotic theory. We are interested in the normalized
score S,(0) = H,(0)71/2S,(0) where H,(0) := V*L,(6).
VSi(0.) = = 3 [=Talogp(Z)] 4 M0, G(6.)
nop\ty) '= —= — O i ) *
/n - 0 108 Po d

H,(0,) =~ 3 [~ Vilogps(Z)] —, H(0.) = V°L(0)

n <
1=1

with G(0) :=E,_p[Vglogps(Z)Vglogps(Z)']. Therefore,
VRS, (0,) — N0, H(0,) G0, H(0,) /7).
Our non-asymptotic theory. With high probability,
n[|Su(0)| = Su(00)TH(0.)718,(60.) S d
whenever n 2 log d, where d, is the effective dimension given by
d, == Tr (H(0,) ""G(0.)H(0.) 7).

e Well-specified model — d, = d.
e Mis-specified model — d, may be much smaller than d.
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Main Results
Estimation bound. With high probability,

2

n HH*W(@n — 0| Sd., whenevern 2 d+ d,.

o Asymptotic theory n||H.*(6, — 0,)||*> =4 X5 -
e Characterize the critical sample size.

Confidence bound. With high probability,
n HHn(Hn)l/Q(Qn — @)HQ < d,, whenever n 2 dlogn + d,.

e Approximate H(6,) and G(6,) by H,(0,) and G,(0,).
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How well does d, approximate d,?

Least squares Logistic regression
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Goodness of fit testing. Assume a well-specified model P = F; .

HQIH*:HQHHlie*#@Q.

Rao's score statistic T}, := || H,,(6y)~'/2S,(0)]|*.
o If 6, =0, then T, = O(d/n) — critical value t,, = O(d/n).
o If 0, = 6y + w(n""?) then asymptotic power one.

o If 6, = 9y + O(n"'/?) then asymptotically bounded power.
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