UNIVERSITY of WASHINGTON

Likelihood Score under Generalized Self-Concordance

Lang Liu, Zaid Harchaoui

Department of Statistics, University of Washington

Overview

- Establish **non-asymptotic bounds** on the normalized likelihood score whose tail behavior is governed by an **effective dimension**.
- Obtain finite-sample confidence bound for the maximum likelihood estimator and analysis for Rao's score test.
- Allow the loss to be **generalized self-concordance** and the model to be **mis-specified**.

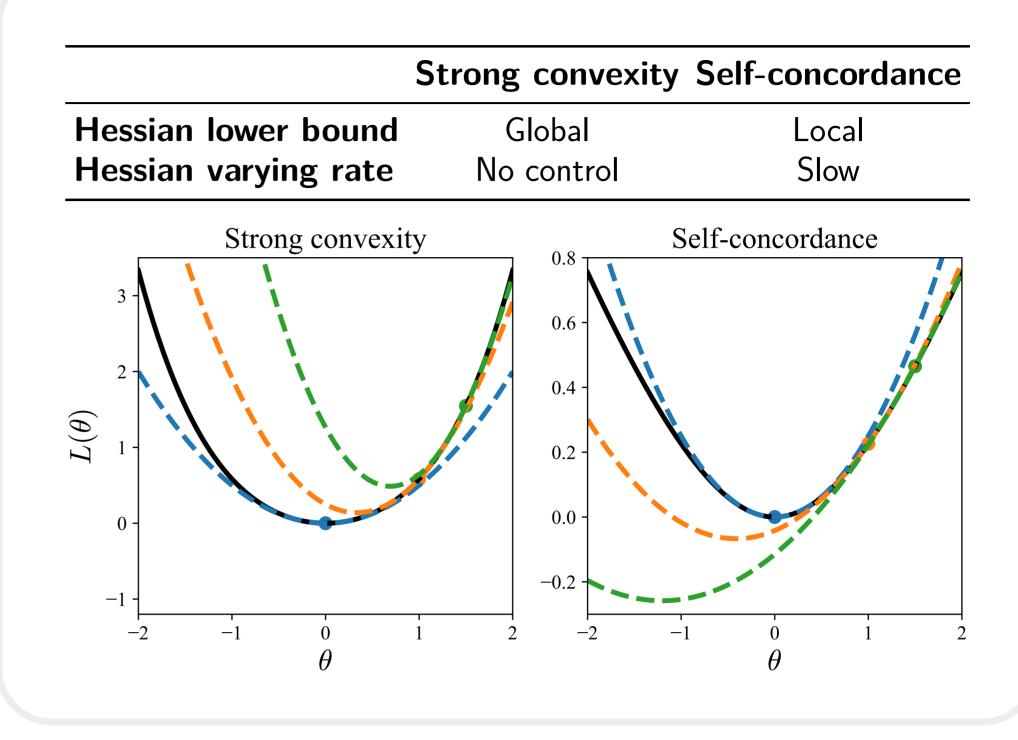
Maximum Likelihood Estimation

Problem. Let $Z \sim \mathbb{P}$ and $\mathcal{P}_{\Theta} := \{P_{\theta} : \theta \in \Theta \subset \mathbb{R}^d\}.$

$$\theta_{\star} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \left\{ \underbrace{L(\theta)}_{\text{population risk}} := \mathbb{E}_{Z \sim \mathbb{P}}[-\log p_{\theta}(Z)] \right\}.$$

When the model is well-specified, i.e., $\mathbb{P} = P_{\theta_0}$, assume $\theta_{\star} = \theta_0$. Empirical risk minimization. Given an i.i.d. sample $\{Z_i\}_{i=1}^n \sim \mathbb{P}$, the

Self-Concordance



maximum likelihood estimator is

$$\theta_n = \underset{\theta \in \Theta}{\arg\min} \left\{ \underbrace{L_n(\theta)}_{\text{empirical risk}} := -\frac{1}{n} \sum_{i=1}^n \log p_\theta(Z_i) \right\}.$$

 $S_n(\theta) := -\nabla L_n(\theta)$ is the likelihood score.

Generalized Linear Models

Generalized linear models (GLM). Let $Z := (X, Y) \in \mathcal{X} \times \mathcal{Y}$.

 $p_{\theta}(y \mid x) \propto \exp(\theta^{\top} t(x, y)) \mathrm{d}\mu(y).$

t: X × Y → ℝ^d sufficient statistic.
µ reference measure on Y, e.g., Lebesgue/counting measure.
Example: softmax regression. X ⊂ ℝ^τ and Y = {1,...,K}.

 $p(y = k \mid x) \propto \exp(w_k^{\top} x) \propto \exp\left(\theta^{\top} t(x, k)\right),$

where $\theta^{\top} := (w_1^{\top}, \dots, w_K^{\top})$ and $t(x, y)^{\top} := (0_{\tau}^{\top}, \dots, 0_{\tau}^{\top}, x^{\top}, 0_{\tau}^{\top}, \dots, 0_{\tau}^{\top}).$

Normalized Likelihood Score

Classical asymptotic theory. We are interested in the normalized score $\tilde{S}_n(\theta) := H_n(\theta)^{-1/2} S_n(\theta)$ where $H_n(\theta) := \nabla^2 L_n(\theta)$.

 $\sqrt{n}S_n(\theta_\star) := \frac{1}{\sqrt{n}} \sum_{i=1}^n \left[-\nabla_\theta \log p_\theta(Z_i) \right] \to_d \mathcal{N}(0, G(\theta_\star))$

Main Results

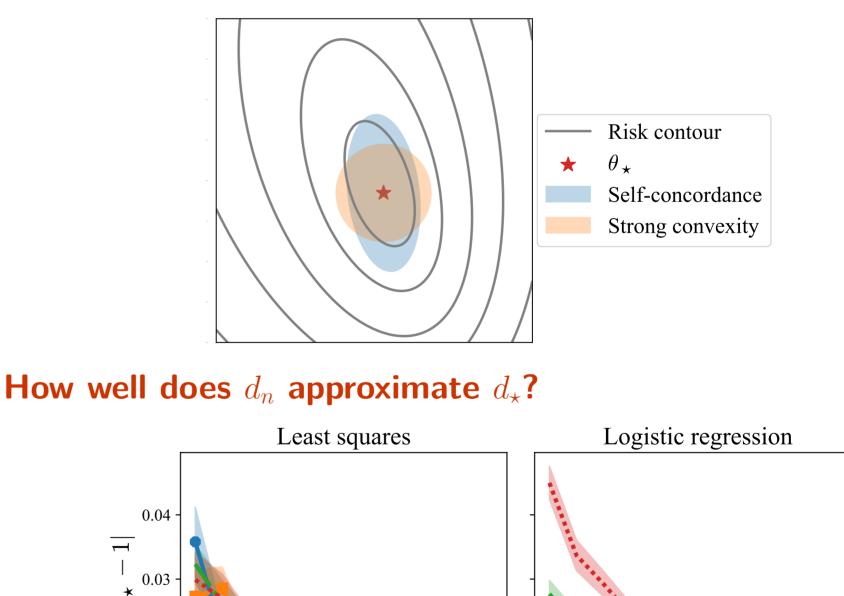
Estimation bound. With high probability,

$$n \left\| H^{1/2}_{\star}(heta_n - heta_{\star}) \right\|^2 \lesssim d_{\star}, \quad ext{whenever } n \gtrsim d + d_{\star}.$$

Asymptotic theory n || H^{1/2}_⋆(θ_n − θ_⋆) ||² →_d χ²_{d_⋆}.
Characterize the critical sample size.
Confidence bound. With high probability,

 $n \left\| H_n(\theta_n)^{1/2}(\theta_n - \theta_\star) \right\|^2 \lesssim d_n, \quad \text{whenever } n \gtrsim d \log n + d_\star.$

• Approximate $H(\theta_{\star})$ and $G(\theta_{\star})$ by $H_n(\theta_n)$ and $G_n(\theta_n)$.



with $G(\theta) := \mathbb{E}_{Z \sim P}[\nabla_{\theta} \log p_{\theta}(Z) \nabla_{\theta} \log p_{\theta}(Z)^{\top}]$. Therefore,

 $\sqrt{n}\tilde{S}_n(\theta_\star) \to \mathcal{N}_d(0, H(\theta_\star)^{-1/2}G(\theta_\star)H(\theta_\star)^{-1/2}).$

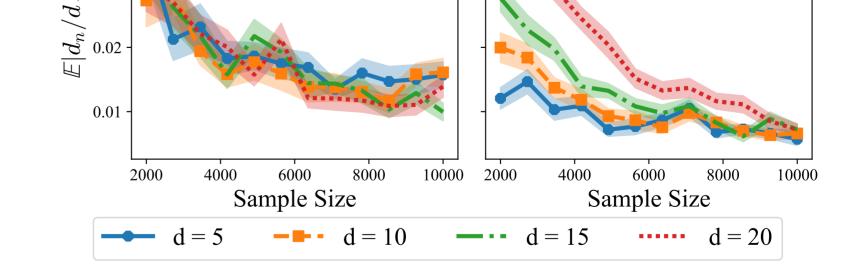
Our non-asymptotic theory. With high probability,

 $n \left\| \tilde{S}_n(\theta_\star) \right\|^2 = S_n(\theta_\star)^\top H_n(\theta_\star)^{-1} S_n(\theta_\star) \lesssim d_\star$

whenever $n \gtrsim \log d$, where d_{\star} is the effective dimension given by

 $d_{\star} := \operatorname{Tr} \left(H(\theta_{\star})^{-1/2} G(\theta_{\star}) H(\theta_{\star})^{-1/2} \right).$

Well-specified model → d_{*} = d.
Mis-specified model → d_{*} may be much smaller than d.



Goodness of fit testing. Assume a well-specified model $\mathbb{P} = P_{\theta_{\star}}$.

 $\mathbf{H}_0: \theta_\star = \theta_0 \leftrightarrow \mathbf{H}_1: \theta_\star \neq \theta_0.$

Rao's score statistic $T_n := ||H_n(\theta_0)^{-1/2}S_n(\theta_0)||^2$. • If $\theta_{\star} = \theta_0$ then $T_n = O(d/n) \rightarrow$ critical value $t_n = O(d/n)$. • If $\theta_{\star} = \theta_0 + \omega(n^{-1/2})$ then asymptotic power one. • If $\theta_{\star} = \theta_0 + O(n^{-1/2})$ then asymptotically bounded power.

Presented at NeurIPS 2022 Workshop on Score-Based Methods.