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• Establish non-asymptotic bounds on the normalized likelihood
score whose tail behavior is governed by an effective dimension.
•Obtain finite-sample confidence bound for the maximum likelihood

estimator and analysis for Rao’s score test.
• Allow the loss to be generalized self-concordance and the model

to be mis-specified.

Overview

Problem. Let Z ∼ P and PΘ := {Pθ : θ ∈ Θ ⊂ Rd}.

θ? = arg min
θ∈Θ

 L(θ)︸︷︷︸
population risk

:= EZ∼P[− log pθ(Z)]

 .

When the model is well-specified, i.e., P = Pθ0, assume θ? = θ0.
Empirical risk minimization. Given an i.i.d. sample {Zi}ni=1 ∼ P, the
maximum likelihood estimator is

θn = arg min
θ∈Θ

 Ln(θ)︸ ︷︷ ︸
empirical risk

:= −1

n

n∑
i=1

log pθ(Zi)

 .

Sn(θ) := −∇Ln(θ) is the likelihood score.

Maximum Likelihood Estimation

Generalized linear models (GLM). Let Z := (X, Y ) ∈ X × Y.

pθ(y | x) ∝ exp(θ>t(x, y))dµ(y).

• t : X × Y → Rd sufficient statistic.
• µ reference measure on Y , e.g., Lebesgue/counting measure.

Example: softmax regression. X ⊂ Rτ and Y = {1, . . . , K}.

p(y = k | x) ∝ exp(w>k x) ∝ exp
(
θ>t(x, k)

)
,

where θ> := (w>1 , . . . , w
>
K) and t(x, y)> := (0>τ , . . . , 0

>
τ , x

>, 0>τ , . . . , 0
>
τ ).

Generalized Linear Models

Classical asymptotic theory. We are interested in the normalized
score S̃n(θ) := Hn(θ)−1/2Sn(θ) where Hn(θ) := ∇2Ln(θ).

√
nSn(θ?) :=

1√
n

n∑
i=1

[−∇θ log pθ(Zi)]→d N (0, G(θ?))

Hn(θ?) :=
1

n

n∑
i=1

[
−∇2

θ log pθ(Zi)
]
→p H(θ?) := ∇2L(θ)

with G(θ) := EZ∼P [∇θ log pθ(Z)∇θ log pθ(Z)>]. Therefore,
√
nS̃n(θ?)→ Nd(0, H(θ?)

−1/2G(θ?)H(θ?)
−1/2).

Our non-asymptotic theory. With high probability,

n
∥∥S̃n(θ?)

∥∥2
= Sn(θ?)

>Hn(θ?)
−1Sn(θ?) . d?

whenever n & log d, where d? is the effective dimension given by

d? := Tr
(
H(θ?)

−1/2G(θ?)H(θ?)
−1/2
)
.

•Well-specified model → d? = d.
•Mis-specified model → d? may be much smaller than d.

Normalized Likelihood Score
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Estimation bound. With high probability,

n
∥∥∥H1/2

? (θn − θ?)
∥∥∥2

. d?, whenever n & d + d?.

• Asymptotic theory n‖H1/2
? (θn − θ?)‖2 →d χ

2
d?

.
• Characterize the critical sample size.

Confidence bound. With high probability,

n
∥∥Hn(θn)1/2(θn − θ?)

∥∥2
. dn, whenever n & d log n + d?.

• Approximate H(θ?) and G(θ?) by Hn(θn) and Gn(θn).
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How well does dn approximate d??
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Goodness of fit testing. Assume a well-specified model P = Pθ?.

H0 : θ? = θ0 ↔ H1 : θ? 6= θ0.

Rao’s score statistic Tn := ‖Hn(θ0)
−1/2Sn(θ0)‖2.

• If θ? = θ0 then Tn = O(d/n)→ critical value tn = O(d/n).
• If θ? = θ0 + ω(n−1/2) then asymptotic power one.
• If θ? = θ0 + O(n−1/2) then asymptotically bounded power.

Main Results
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